


Powerful functions: Use Go language to implement four arithmetic operations to easily cope with complex operation requirements
Title: Powerful: Use Go language to implement four arithmetic operations, easily coping with complex operation requirements
With the development of the computer field, the four arithmetic operations are the most basic mathematical operations One, often widely used in various types of software development. In order to better meet complex computing needs, many developers use efficient programming languages such as the Go language to implement related functions. This article will introduce how to use Go language to implement four arithmetic operations, from simple addition, subtraction, multiplication and division to complex operations that support parentheses and precedence, helping readers easily solve calculation problems.
First of all, we need to clarify the basic principles of the four arithmetic operations. The four arithmetic operations include addition, subtraction, multiplication and division. The calculation order can be determined by sequential calculation or based on parentheses and priority. In Go language, we can implement these functions by defining structures and methods. The following is a simple Go language program that implements the basic four arithmetic functions:
package main import ( "fmt" ) type Operation struct { operand1 float64 operand2 float64 } func (op Operation) Add() float64 { return op.operand1 + op.operand2 } func (op Operation) Subtract() float64 { return op.operand1 - op.operand2 } func (op Operation) Multiply() float64 { return op.operand1 * op.operand2 } func (op Operation) Divide() float64 { if op.operand2 != 0 { return op.operand1 / op.operand2 } else { return 0 } } func main() { op := Operation{operand1: 10, operand2: 5} fmt.Println("加法结果:", op.Add()) fmt.Println("减法结果:", op.Subtract()) fmt.Println("乘法结果:", op.Multiply()) fmt.Println("除法结果:", op.Divide()) }
In the above example, a Operation
structure is defined, containing two operandsoperand1
and operand2
, and implement four operations methods of addition, subtraction, multiplication and division respectively. In the main
function, an Operation
object is created, these methods are called respectively and the results are printed.
In addition to the basic four arithmetic operations, sometimes we also need to process complex operation expressions containing parentheses and precedence. This can be achieved with the help of the stack data structure. The following is an example of a Go language program that implements four arithmetic operations with parentheses and precedence:
package main import ( "fmt" "strconv" "strings" ) func calculate(expression string) float64 { expression = strings.ReplaceAll(expression, " ", "") // 去除空格 stack := []string{} tokens := strings.Split(expression, "") for _, token := range tokens { if token == "(" { stack = append(stack, token) } else if token == ")" { var current string for { current, stack = stack[len(stack)-1], stack[:len(stack)-1] if current == "(" { break } result, _ := strconv.ParseFloat(current, 64) stack = append(stack, strconv.FormatFloat(result, 'f', -1, 64)) } } else { stack = append(stack, token) } } for len(stack) > 1 { op2, _ := strconv.ParseFloat(stack[len(stack)-1], 64) op1, _ := strconv.ParseFloat(stack[len(stack)-3], 64) operator := stack[len(stack)-2] var result float64 switch operator { case "+": result = op1 + op2 case "-": result = op1 - op2 case "*": result = op1 * op2 case "/": result = op1 / op2 } stack = stack[:len(stack)-3] stack = append(stack, strconv.FormatFloat(result, 'f', -1, 64)) } result, _ := strconv.ParseFloat(stack[0], 64) return result } func main() { expression := "(10 + 5) * 2" result := calculate(expression) fmt.Println("复杂运算结果:", result) }
In the above example, the calculate
function can express complex operations involving parentheses and precedence. Calculate the formula. The bracket structure of the expression is processed through the stack, and the final result is calculated sequentially according to the priority of the four arithmetic operations. In the main
function, we define an expression containing parentheses (10 5) * 2
, and the result is calculated and printed through the calculate
function.
In summary, implementing the four arithmetic operations through Go language can not only solve basic operation needs, but also easily handle complex operation expressions containing parentheses and precedence. Developers can optimize the code according to actual needs and achieve more feature-rich computing functions. I hope this article can help readers better understand how to use Go language to implement four arithmetic operations and cope with complex computing requirements.
The above is the detailed content of Powerful functions: Use Go language to implement four arithmetic operations to easily cope with complex operation requirements. For more information, please follow other related articles on the PHP Chinese website!

The article discusses using Go's "strings" package for string manipulation, detailing common functions and best practices to enhance efficiency and handle Unicode effectively.

The article details using Go's "crypto" package for cryptographic operations, discussing key generation, management, and best practices for secure implementation.Character count: 159

The article details the use of Go's "time" package for handling dates, times, and time zones, including getting current time, creating specific times, parsing strings, and measuring elapsed time.

Article discusses using Go's "reflect" package for variable inspection and modification, highlighting methods and performance considerations.

The article discusses using Go's "sync/atomic" package for atomic operations in concurrent programming, detailing its benefits like preventing race conditions and improving performance.

The article discusses type conversions in Go, including syntax, safe conversion practices, common pitfalls, and learning resources. It emphasizes explicit type conversion and error handling.[159 characters]

The article discusses type assertions in Go, focusing on syntax, potential errors like panics and incorrect types, safe handling methods, and performance implications.

The article explains the use of the "select" statement in Go for handling multiple channel operations, its differences from the "switch" statement, and common use cases like handling multiple channels, implementing timeouts, non-b


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 English version
Recommended: Win version, supports code prompts!

SublimeText3 Linux new version
SublimeText3 Linux latest version

Notepad++7.3.1
Easy-to-use and free code editor
