


Title: Powerful: Use Go language to implement four arithmetic operations, easily coping with complex operation requirements
With the development of the computer field, the four arithmetic operations are the most basic mathematical operations One, often widely used in various types of software development. In order to better meet complex computing needs, many developers use efficient programming languages such as the Go language to implement related functions. This article will introduce how to use Go language to implement four arithmetic operations, from simple addition, subtraction, multiplication and division to complex operations that support parentheses and precedence, helping readers easily solve calculation problems.
First of all, we need to clarify the basic principles of the four arithmetic operations. The four arithmetic operations include addition, subtraction, multiplication and division. The calculation order can be determined by sequential calculation or based on parentheses and priority. In Go language, we can implement these functions by defining structures and methods. The following is a simple Go language program that implements the basic four arithmetic functions:
package main import ( "fmt" ) type Operation struct { operand1 float64 operand2 float64 } func (op Operation) Add() float64 { return op.operand1 + op.operand2 } func (op Operation) Subtract() float64 { return op.operand1 - op.operand2 } func (op Operation) Multiply() float64 { return op.operand1 * op.operand2 } func (op Operation) Divide() float64 { if op.operand2 != 0 { return op.operand1 / op.operand2 } else { return 0 } } func main() { op := Operation{operand1: 10, operand2: 5} fmt.Println("加法结果:", op.Add()) fmt.Println("减法结果:", op.Subtract()) fmt.Println("乘法结果:", op.Multiply()) fmt.Println("除法结果:", op.Divide()) }
In the above example, a Operation
structure is defined, containing two operandsoperand1
and operand2
, and implement four operations methods of addition, subtraction, multiplication and division respectively. In the main
function, an Operation
object is created, these methods are called respectively and the results are printed.
In addition to the basic four arithmetic operations, sometimes we also need to process complex operation expressions containing parentheses and precedence. This can be achieved with the help of the stack data structure. The following is an example of a Go language program that implements four arithmetic operations with parentheses and precedence:
package main import ( "fmt" "strconv" "strings" ) func calculate(expression string) float64 { expression = strings.ReplaceAll(expression, " ", "") // 去除空格 stack := []string{} tokens := strings.Split(expression, "") for _, token := range tokens { if token == "(" { stack = append(stack, token) } else if token == ")" { var current string for { current, stack = stack[len(stack)-1], stack[:len(stack)-1] if current == "(" { break } result, _ := strconv.ParseFloat(current, 64) stack = append(stack, strconv.FormatFloat(result, 'f', -1, 64)) } } else { stack = append(stack, token) } } for len(stack) > 1 { op2, _ := strconv.ParseFloat(stack[len(stack)-1], 64) op1, _ := strconv.ParseFloat(stack[len(stack)-3], 64) operator := stack[len(stack)-2] var result float64 switch operator { case "+": result = op1 + op2 case "-": result = op1 - op2 case "*": result = op1 * op2 case "/": result = op1 / op2 } stack = stack[:len(stack)-3] stack = append(stack, strconv.FormatFloat(result, 'f', -1, 64)) } result, _ := strconv.ParseFloat(stack[0], 64) return result } func main() { expression := "(10 + 5) * 2" result := calculate(expression) fmt.Println("复杂运算结果:", result) }
In the above example, the calculate
function can express complex operations involving parentheses and precedence. Calculate the formula. The bracket structure of the expression is processed through the stack, and the final result is calculated sequentially according to the priority of the four arithmetic operations. In the main
function, we define an expression containing parentheses (10 5) * 2
, and the result is calculated and printed through the calculate
function.
In summary, implementing the four arithmetic operations through Go language can not only solve basic operation needs, but also easily handle complex operation expressions containing parentheses and precedence. Developers can optimize the code according to actual needs and achieve more feature-rich computing functions. I hope this article can help readers better understand how to use Go language to implement four arithmetic operations and cope with complex computing requirements.
The above is the detailed content of Powerful functions: Use Go language to implement four arithmetic operations to easily cope with complex operation requirements. For more information, please follow other related articles on the PHP Chinese website!

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

go语言能编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言。对Go语言程序进行编译的命令有两种:1、“go build”命令,可以将Go语言程序代码编译成二进制的可执行文件,但该二进制文件需要手动运行;2、“go run”命令,会在编译后直接运行Go语言程序,编译过程中会产生一个临时文件,但不会生成可执行文件。

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。

删除map元素的两种方法:1、使用delete()函数从map中删除指定键值对,语法“delete(map, 键名)”;2、重新创建一个新的map对象,可以清空map中的所有元素,语法“var mapname map[keytype]valuetype”。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Linux new version
SublimeText3 Linux latest version

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
