search
HomeBackend DevelopmentGolangGolang data conversion method: master the core technology of data conversion and easily cope with various scenarios

Golang data conversion method: master the core technology of data conversion and easily cope with various scenarios

Golang data conversion method: Master the core technology of data conversion, easily cope with various scenarios, need specific code examples

In Golang development, data conversion is a very important Common operations. Whether it is converting data format to another format or converting data type to another type, some technical means are required to achieve it. The quality and efficiency of data conversion directly affect the performance and stability of the program. Therefore, it is very important to master the core technology of data conversion.

This article will introduce some commonly used Golang data conversion methods, and use specific code examples to help readers better understand and master these technologies.

1. Conversion between strings and integers

In Golang, conversion between strings and integers is a relatively common operation. The following is a sample code to convert a string to an integer:

package main

import (
    "fmt"
    "strconv"
)

func main() {
    str := "123"
    num, err := strconv.Atoi(str)
    if err != nil {
        fmt.Println("转换失败:", err)
        return
    }
    fmt.Println(num)
}

In the above code, the string can be converted to an integer through the strconv.Atoi function. If the conversion fails, it will Return an error.

Similarly, if you want to convert an integer to a string, you can use the strconv.Itoa function:

package main

import (
    "fmt"
    "strconv"
)

func main() {
    num := 123
    str := strconv.Itoa(num)
    fmt.Println(str)
}

2. Conversion between structure and JSON

In Golang, conversion between structures and JSON is also a relatively common operation. The following is a sample code that converts a structure into a JSON string:

package main

import (
    "encoding/json"
    "fmt"
)

type Person struct {
    Name string `json:"name"`
    Age  int    `json:"age"`
}

func main() {
    person := Person{Name: "Alice", Age: 25}
    jsonStr, err := json.Marshal(person)
    if err != nil {
        fmt.Println("转换失败:", err)
        return
    }
    fmt.Println(string(jsonStr))
}

In the above code, the structure can be converted into a JSON string through the json.Marshal function.

If you want to convert a JSON string into a structure, you can use the json.Unmarshal function:

package main

import (
    "encoding/json"
    "fmt"
)

type Person struct {
    Name string `json:"name"`
    Age  int    `json:"age"`
}

func main() {
    jsonStr := `{"name":"Bob","age":30}`
    var person Person
    err := json.Unmarshal([]byte(jsonStr), &person)
    if err != nil {
        fmt.Println("转换失败:", err)
        return
    }
    fmt.Println(person)
}

3. Interface type assertion

In Golang Interface is a very flexible data type that is often used to implement polymorphism of data. But when using interfaces, sometimes it is necessary to convert the interface into a specific type. At this time, you can use interface type assertion to achieve:

package main

import "fmt"

type Shape interface {
    Area() float64
}

type Circle struct {
    Radius float64
}

func (c Circle) Area() float64 {
    return 3.14 * c.Radius * c.Radius
}

func main() {
    var s Shape
    s = Circle{Radius: 5}
    circle, ok := s.(Circle)
    if !ok {
        fmt.Println("类型断言失败")
        return
    }
    fmt.Println(circle.Area())
}

In the above code, the interface s is converted into a specific type through s.(Circle) Circle, and determine whether the conversion is successful.

Through the above introduction, readers can better understand and master the core technology of data conversion in Golang. After mastering these technologies, readers can easily handle various data conversion scenarios and improve program performance and stability. I hope the content of this article will be helpful to readers.

The above is the detailed content of Golang data conversion method: master the core technology of data conversion and easily cope with various scenarios. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Choosing Between Golang and Python: The Right Fit for Your ProjectChoosing Between Golang and Python: The Right Fit for Your ProjectApr 19, 2025 am 12:21 AM

Golangisidealforperformance-criticalapplicationsandconcurrentprogramming,whilePythonexcelsindatascience,rapidprototyping,andversatility.1)Forhigh-performanceneeds,chooseGolangduetoitsefficiencyandconcurrencyfeatures.2)Fordata-drivenprojects,Pythonisp

Golang: Concurrency and Performance in ActionGolang: Concurrency and Performance in ActionApr 19, 2025 am 12:20 AM

Golang achieves efficient concurrency through goroutine and channel: 1.goroutine is a lightweight thread, started with the go keyword; 2.channel is used for secure communication between goroutines to avoid race conditions; 3. The usage example shows basic and advanced usage; 4. Common errors include deadlocks and data competition, which can be detected by gorun-race; 5. Performance optimization suggests reducing the use of channel, reasonably setting the number of goroutines, and using sync.Pool to manage memory.

Golang vs. Python: Which Language Should You Learn?Golang vs. Python: Which Language Should You Learn?Apr 19, 2025 am 12:20 AM

Golang is more suitable for system programming and high concurrency applications, while Python is more suitable for data science and rapid development. 1) Golang is developed by Google, statically typing, emphasizing simplicity and efficiency, and is suitable for high concurrency scenarios. 2) Python is created by Guidovan Rossum, dynamically typed, concise syntax, wide application, suitable for beginners and data processing.

Golang vs. Python: Performance and ScalabilityGolang vs. Python: Performance and ScalabilityApr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang vs. Other Languages: A ComparisonGolang vs. Other Languages: A ComparisonApr 19, 2025 am 12:11 AM

Go language has unique advantages in concurrent programming, performance, learning curve, etc.: 1. Concurrent programming is realized through goroutine and channel, which is lightweight and efficient. 2. The compilation speed is fast and the operation performance is close to that of C language. 3. The grammar is concise, the learning curve is smooth, and the ecosystem is rich.

Golang and Python: Understanding the DifferencesGolang and Python: Understanding the DifferencesApr 18, 2025 am 12:21 AM

The main differences between Golang and Python are concurrency models, type systems, performance and execution speed. 1. Golang uses the CSP model, which is suitable for high concurrent tasks; Python relies on multi-threading and GIL, which is suitable for I/O-intensive tasks. 2. Golang is a static type, and Python is a dynamic type. 3. Golang compiled language execution speed is fast, and Python interpreted language development is fast.

Golang vs. C  : Assessing the Speed DifferenceGolang vs. C : Assessing the Speed DifferenceApr 18, 2025 am 12:20 AM

Golang is usually slower than C, but Golang has more advantages in concurrent programming and development efficiency: 1) Golang's garbage collection and concurrency model makes it perform well in high concurrency scenarios; 2) C obtains higher performance through manual memory management and hardware optimization, but has higher development complexity.

Golang: A Key Language for Cloud Computing and DevOpsGolang: A Key Language for Cloud Computing and DevOpsApr 18, 2025 am 12:18 AM

Golang is widely used in cloud computing and DevOps, and its advantages lie in simplicity, efficiency and concurrent programming capabilities. 1) In cloud computing, Golang efficiently handles concurrent requests through goroutine and channel mechanisms. 2) In DevOps, Golang's fast compilation and cross-platform features make it the first choice for automation tools.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.