search
HomeJavajavaTutorialJava Memory Model and Visibility: A closer look at data consistency in multi-threaded programming

Java Memory Model and Visibility: A closer look at data consistency in multi-threaded programming

Feb 19, 2024 pm 09:00 PM
javamultithreaded programmingmemory modelatomicityvisibility

Java 内存模型与可见性:深入剖析多线程编程中的数据一致性

php editor Xigua will take you to deeply explore the Java memory model and visibility, and analyze the data consistency issues in multi-threaded programming. In a multi-threaded environment, data visibility is critical to program correctness. By deeply analyzing the Java memory model, we can better understand the mechanism of data interaction in multi-threaded programming, thereby avoiding unexpected problems. In this article, we will discuss key issues in multi-threaded programming to help readers better understand and apply the relevant knowledge of the Java memory model.

  1. Visibility:

Visibility means that modifications to shared variables by one thread can be immediately seen by other threads. In JMM, visibility is achieved through memory barriers. A memory barrier is a special instruction that forces the JVM to flush the cache before or after performing a memory operation.

public class VisibilityDemo {

private int sharedVar = 0;

public void writerThread() {
sharedVar = 42;
}

public void readerThread() {
int localVar = sharedVar; // 可能读取到旧值
System.out.println("Reader thread: " + localVar);
}

public static void main(String[] args) {
VisibilityDemo demo = new VisibilityDemo();

Thread writer = new Thread(demo::writerThread);
Thread reader = new Thread(demo::readerThread);

writer.start();
reader.start();

writer.join();
reader.join();
}
}

In the above example, writerThread and readerThread access the shared variable sharedVar at the same time. Without a memory barrier, readerThread may read old sharedVar values, causing the program to output incorrect results. To solve this problem, a memory barrier can be inserted between writerThread and readerThread.

public class VisibilityDemoWithMemoryBarrier {

private int sharedVar = 0;

public void writerThread() {
// 插入内存屏障
synchronized (this) {}

sharedVar = 42;
}

public void readerThread() {
// 插入内存屏障
synchronized (this) {}

int localVar = sharedVar;
System.out.println("Reader thread: " + localVar);
}

public static void main(String[] args) {
VisibilityDemoWithMemoryBarrier demo = new VisibilityDemoWithMemoryBarrier();

Thread writer = new Thread(demo::writerThread);
Thread reader = new Thread(demo::readerThread);

writer.start();
reader.start();

writer.join();
reader.join();
}
}

In the above example, we inserted a memory barrier between writerThread and readerThread (by calling the synchronized method). In this way, readerThread will be able to immediately see writerThread's modifications to sharedVar without erroneous results.

  1. Atomicity:

Atomicity means that an operation is either completely executed or not executed at all. In JMM, atomicity is achieved through atomic variables and atomic operations (atomic operation).

Atomic variable is a special variable that can only be accessed by one thread at the same time. An atomic operation is a special operation that can be performed without interruption.

import java.util.concurrent.atomic.AtomicInteger;

public class AtomicityDemo {

private AtomicInteger sharedVar = new AtomicInteger(0);

public void incrementSharedVar() {
sharedVar.incrementAndGet();
}

public static void main(String[] args) {
AtomicityDemo demo = new AtomicityDemo();

Thread[] threads = new Thread[10];
for (int i = 0; i < threads.length; i++) {
threads[i] = new Thread(demo::incrementSharedVar);
}

for (Thread thread : threads) {
thread.start();
}

for (Thread thread : threads) {
thread.join();
}

System.out.println("Final value of sharedVar: " + demo.sharedVar.get());
}
}

In the above example, we use atomic variables sharedVar to ensure that modifications to sharedVar by multiple threads are atomic. Even if multiple threads modify sharedVar at the same time, the final result will be correct.

  1. Applications of JMM:

JMM is widely used in multi-threaded programming, such as:

  • Thread-safe class design: JMM can help us design thread-safe classes to ensure that shared variables in the class can be accessed correctly in a multi-threaded environment.
  • Concurrent data structure implementation: JMM can help us implement ConcurrencyData structures, such as concurrent queues, concurrent stacks, etc. These data structures can be used in multiple threads safe to use in the environment.
  • High-performance concurrent algorithm design: JMM can help us design high-performance concurrent algorithms , such as no lock algorithms, etc. These algorithms can make full use of multi-core CPU advantages for higher performance.
In short, JMM is the foundation of Java multi-threaded programming. Understanding the principles and applications of JMM is very important for writing correct and efficient multi-threaded programs.

The above is the detailed content of Java Memory Model and Visibility: A closer look at data consistency in multi-threaded programming. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:编程网. If there is any infringement, please contact admin@php.cn delete
Are there any emerging technologies that threaten or enhance Java's platform independence?Are there any emerging technologies that threaten or enhance Java's platform independence?Apr 24, 2025 am 12:11 AM

Emerging technologies pose both threats and enhancements to Java's platform independence. 1) Cloud computing and containerization technologies such as Docker enhance Java's platform independence, but need to be optimized to adapt to different cloud environments. 2) WebAssembly compiles Java code through GraalVM, extending its platform independence, but it needs to compete with other languages ​​for performance.

What are the different implementations of the JVM, and do they all provide the same level of platform independence?What are the different implementations of the JVM, and do they all provide the same level of platform independence?Apr 24, 2025 am 12:10 AM

Different JVM implementations can provide platform independence, but their performance is slightly different. 1. OracleHotSpot and OpenJDKJVM perform similarly in platform independence, but OpenJDK may require additional configuration. 2. IBMJ9JVM performs optimization on specific operating systems. 3. GraalVM supports multiple languages ​​and requires additional configuration. 4. AzulZingJVM requires specific platform adjustments.

How does platform independence reduce development costs and time?How does platform independence reduce development costs and time?Apr 24, 2025 am 12:08 AM

Platform independence reduces development costs and shortens development time by running the same set of code on multiple operating systems. Specifically, it is manifested as: 1. Reduce development time, only one set of code is required; 2. Reduce maintenance costs and unify the testing process; 3. Quick iteration and team collaboration to simplify the deployment process.

How does Java's platform independence facilitate code reuse?How does Java's platform independence facilitate code reuse?Apr 24, 2025 am 12:05 AM

Java'splatformindependencefacilitatescodereusebyallowingbytecodetorunonanyplatformwithaJVM.1)Developerscanwritecodeonceforconsistentbehavioracrossplatforms.2)Maintenanceisreducedascodedoesn'tneedrewriting.3)Librariesandframeworkscanbesharedacrossproj

How do you troubleshoot platform-specific issues in a Java application?How do you troubleshoot platform-specific issues in a Java application?Apr 24, 2025 am 12:04 AM

To solve platform-specific problems in Java applications, you can take the following steps: 1. Use Java's System class to view system properties to understand the running environment. 2. Use the File class or java.nio.file package to process file paths. 3. Load the local library according to operating system conditions. 4. Use VisualVM or JProfiler to optimize cross-platform performance. 5. Ensure that the test environment is consistent with the production environment through Docker containerization. 6. Use GitHubActions to perform automated testing on multiple platforms. These methods help to effectively solve platform-specific problems in Java applications.

How does the class loader subsystem in the JVM contribute to platform independence?How does the class loader subsystem in the JVM contribute to platform independence?Apr 23, 2025 am 12:14 AM

The class loader ensures the consistency and compatibility of Java programs on different platforms through unified class file format, dynamic loading, parent delegation model and platform-independent bytecode, and achieves platform independence.

Does the Java compiler produce platform-specific code? Explain.Does the Java compiler produce platform-specific code? Explain.Apr 23, 2025 am 12:09 AM

The code generated by the Java compiler is platform-independent, but the code that is ultimately executed is platform-specific. 1. Java source code is compiled into platform-independent bytecode. 2. The JVM converts bytecode into machine code for a specific platform, ensuring cross-platform operation but performance may be different.

How does the JVM handle multithreading on different operating systems?How does the JVM handle multithreading on different operating systems?Apr 23, 2025 am 12:07 AM

Multithreading is important in modern programming because it can improve program responsiveness and resource utilization and handle complex concurrent tasks. JVM ensures the consistency and efficiency of multithreads on different operating systems through thread mapping, scheduling mechanism and synchronization lock mechanism.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment