search
HomeBackend DevelopmentGolangHow to understand slices in Golang structures

如何理解 Golang 结构体中的切片

In Golang, a structure is a custom data type that can contain multiple fields. In a structure, a slice is a dynamic array that can be expanded or reduced as needed. However, understanding slices in Golang structs can cause some confusion. In this article, PHP editor Youzi will explain to you in detail the working principle and usage of slicing in the Golang structure, helping you better understand and apply this feature. Whether you are a beginner or an experienced developer, this article will provide you with valuable knowledge and practical tips to make you more comfortable in Golang development.

Question content

I am new to Golang and I am trying to understand pointers

type deque struct {
    indexes []int
}

func (d *deque) push(i int) {
    d.indexes = append(d.indexes, i)
}

The index here is a slice rather than a pointer to the slice.

How are indexes actually stored in memory?

For example: When we start a deque instance, we call it dq. In memory, the address of dq is 0x1001 (we call it adr(dq)).

What are the variables stored in adr(dq)? Is it a pointer to an array?

0x1001 -> Ox8009 (the address of the first element of the array)

Or the array itself?

0x1001 -> The first element of the slice

0x1002 -> The second element of the slice

What happens when we:

d.indexes = append(d.indexes, i)

What is the difference if we define:

type deque struct {
    indexes *[]int
}

Solution

For example, the address of the deque instance in memory is 0x1001. It initializes:

0x1001 -> [indexes: nil]

If you add a new element (dq.push(12)):

0x1001 -> [length: 1, capacity: 1, data: 0x3001 (pointer to data)]
0x3001 -> [12]
The slice structure at

0x1001 contains information about the slice length and capacity (length: 1, capacity: 1), the actual data is stored at another address (assuming 0x3001, array[12]). p>

If you push other elements (dq.push(34), dq.push(56)).

0x1001 -> [length: 3, capacity: 4, data: 0x5001 (new pointer to data due to capacity, capacity doubles)]
0x5001 -> [12, 34, 56]

Code 1:

type deque struct {
    indexes []int
}
func (d *deque) push(i int) {
    d.indexes = append(d.indexes, i)
}
func main() {
    dq := deque{}
    dq.push(12)
    dq.push(34)
    dq.push(56)
    fmt.Println("Deque elements:", dq.indexes)
}

Output 1:

Deque elements: [12 34 56]

If using a pointer to a slice (*[]int) instead of the slice itself ([]int). This means that the indexes field will hold a pointer to the slice, and that pointer needs to be initialized before using it.

If you add a new element (dq.push(12)), then 0x2001 is the address of the underlying slice structure pointed to by indexes

0x1001 -> [indexes: 0x2001 (pointer to slice)]
0x2001 -> [length: 1, capacity: 1, data: 0x3001 (pointer to data)]
0x3001 -> [12]
The slice structure at

0x2001 contains the length and capacity information of the slice (length: 1, capacity: 1), and the actual data is stored at another address (0x3001, array [12]).

If you push other elements (dq.push(34), dq.push(56)).

0x1001 -> [indexes: 0x2001 (pointer to slice)]
0x2001 -> [length: 3, capacity: 4, data: 0x5001 (new data pointer, due to capacity, capacity doubles)]
0x5001 -> [12, 34, 56]

Code 2:

type deque struct {
    indexes *[]int
}

func (d *deque) push(i int) {
    if d.indexes == nil {    // initialize the slice if it's nil
        d.indexes = &[]int{}
    }
    *d.indexes = append(*d.indexes, i)
}

func main() {
    dq := deque{}
    dq.push(12)
    dq.push(34)
    dq.push(56)
    fmt.Println("Deque elements:", *dq.indexes)
}

Output 2:

Deque elements: [12 34 56]

The above is the detailed content of How to understand slices in Golang structures. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:stackoverflow. If there is any infringement, please contact admin@php.cn delete
Golang vs. Python: The Pros and ConsGolang vs. Python: The Pros and ConsApr 21, 2025 am 12:17 AM

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t

Golang and C  : Concurrency vs. Raw SpeedGolang and C : Concurrency vs. Raw SpeedApr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Why Use Golang? Benefits and Advantages ExplainedWhy Use Golang? Benefits and Advantages ExplainedApr 21, 2025 am 12:15 AM

Reasons for choosing Golang include: 1) high concurrency performance, 2) static type system, 3) garbage collection mechanism, 4) rich standard libraries and ecosystems, which make it an ideal choice for developing efficient and reliable software.

Golang vs. C  : Performance and Speed ComparisonGolang vs. C : Performance and Speed ComparisonApr 21, 2025 am 12:13 AM

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Is Golang Faster Than C  ? Exploring the LimitsIs Golang Faster Than C ? Exploring the LimitsApr 20, 2025 am 12:19 AM

Golang performs better in compilation time and concurrent processing, while C has more advantages in running speed and memory management. 1.Golang has fast compilation speed and is suitable for rapid development. 2.C runs fast and is suitable for performance-critical applications. 3. Golang is simple and efficient in concurrent processing, suitable for concurrent programming. 4.C Manual memory management provides higher performance, but increases development complexity.

Golang: From Web Services to System ProgrammingGolang: From Web Services to System ProgrammingApr 20, 2025 am 12:18 AM

Golang's application in web services and system programming is mainly reflected in its simplicity, efficiency and concurrency. 1) In web services, Golang supports the creation of high-performance web applications and APIs through powerful HTTP libraries and concurrent processing capabilities. 2) In system programming, Golang uses features close to hardware and compatibility with C language to be suitable for operating system development and embedded systems.

Golang vs. C  : Benchmarks and Real-World PerformanceGolang vs. C : Benchmarks and Real-World PerformanceApr 20, 2025 am 12:18 AM

Golang and C have their own advantages and disadvantages in performance comparison: 1. Golang is suitable for high concurrency and rapid development, but garbage collection may affect performance; 2.C provides higher performance and hardware control, but has high development complexity. When making a choice, you need to consider project requirements and team skills in a comprehensive way.

Golang vs. Python: A Comparative AnalysisGolang vs. Python: A Comparative AnalysisApr 20, 2025 am 12:17 AM

Golang is suitable for high-performance and concurrent programming scenarios, while Python is suitable for rapid development and data processing. 1.Golang emphasizes simplicity and efficiency, and is suitable for back-end services and microservices. 2. Python is known for its concise syntax and rich libraries, suitable for data science and machine learning.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor