Recently, I was working on a project and encountered a problem. When ThreadX running on ARM communicates with the DSP, it uses a message queue to deliver messages (the final implementation uses interrupts and shared memory methods). However, during actual operation, it was found that ThreadX often crashed. After investigation, it was found that the problem lies in the fact that the structure passing the message does not consider byte alignment.
I would like to sort out the issues about byte alignment in C language and share them with you.
1. Concept
Byte alignment is related to the location of data in memory. If the memory address of a variable is exactly an integer multiple of its length, then it is said to be naturally aligned. For example, under a 32-bit CPU, assuming the address of an integer variable is 0x00000004, then it is naturally aligned.
First understand what bits, bytes and words are
name | English name | meaning |
---|---|---|
Bit | bit | 1 binary bit is called 1 bit |
byte | Byte | 8 binary bits are called 1 Byte |
Character | word | A fixed length used by computers to process transactions at one time |
Word length
The number of bits in a word, the word length of modern computers is usually 16, 32, or 64 bits. (Generally, the word length of N-bit systems is N/8 bytes.)
Different CPUs can process different number of data bits at a time. A 32-bit CPU can process 32-bit data at a time, and a 64-bit CPU can process 64-bit data at a time. The bits here refer to the word length.
The so-called word length is sometimes called word. In a 16-bit CPU, a word is exactly two bytes, while in a 32-bit CPU, a word is four bytes. If we take characters as units, there are double characters (two characters) and quad characters (four characters) upwards.
2. Alignment rules
For standard data types, its address only needs to be an integer multiple of its length. Non-standard data types are aligned according to the following principles: Array: Aligned according to basic data types. The first one is aligned with the following ones. It's aligned. Union: Aligned by the data type it contains with the largest length. Structure: Each data type in the structure must be aligned.
3. How to limit the number of byte alignments?
1. Default
By default, the C compiler allocates space for each variable or data unit according to its natural boundary conditions. Generally, the default boundary conditions can be changed by the following methods:
2. #pragma pack(n)
· Using the #pragma pack (n) directive, the C compiler will align by n bytes. · Use the directive #pragma pack () to cancel the custom byte alignment.
#pragma pack(n) is used to set variables to n-byte alignment. n-byte alignment means that there are two situations for the offset of the starting address where the variable is stored:
- If n is greater than or equal to the number of bytes occupied by the variable, then the offset must meet the default alignment
- If n is less than the number of bytes occupied by the variable's type, the offset is a multiple of n and does not need to meet the default alignment.
The total size of the structure also has a constraint. If n is greater than or equal to the number of bytes occupied by all member variable types, then the total size of the structure must be the number of spaces occupied by the variable that occupies the largest space. Multiple; otherwise it must be a multiple of n.
3. __attribute
In addition, there is the following method: · __attribute((aligned (n))), which aligns the structure members being acted on on the natural boundary of n bytes. If the length of any member in the structure is greater than n, it is aligned according to the length of the largest member. · attribute ((packed)), cancels the optimization alignment of the structure during compilation, and aligns it according to the actual number of bytes occupied.
3. Assembly.align
Assembly code usually uses .align to specify the number of byte alignment bits.
.align: used to specify the alignment of data, the format is as follows:
.align [absexpr1, absexpr2]
Fill the unused storage area with values in a certain alignment. The first value represents the alignment, 4, 8, 16 or 32. The second expression value represents the filled value.
四、为什么要对齐?
操作系统并非一个字节一个字节访问内存,而是按2,4,8这样的字长来访问。因此,当CPU从存储器读数据到寄存器,IO的数据长度通常是字长。如32位系统访问粒度是4字节(bytes), 64位系统的是8字节。当被访问的数据长度为n字节且该数据地址为n字节对齐时,那么操作系统就可以高效地一次定位到数据, 无需多次读取,处理对齐运算等额外操作。数据结构应该尽可能地在自然边界上对齐。如果访问未对齐的内存,CPU需要做两次内存访问。
字节对齐可能带来的隐患:
代码中关于对齐的隐患,很多是隐式的。比如在强制类型转换的时候。例如:
unsigned int i = 0x12345678; unsigned char *p=NULL; unsigned short *p1=NULL; p=&i; *p=0x00; p1=(unsigned short *)(p+1); *p1=0x0000;
最后两句代码,从奇数边界去访问unsignedshort型变量,显然不符合对齐的规定。在x86上,类似的操作只会影响效率,但是在MIPS或者sparc上,可能就是一个error,因为它们要求必须字节对齐.
五、举例
例1:os基本数据类型占用的字节数
首先查看操作系统的位数
在64位操作系统下查看基本数据类型占用的字节数:
#include int main() { printf("sizeof(char) = %ld\n", sizeof(char)); printf("sizeof(int) = %ld\n", sizeof(int)); printf("sizeof(float) = %ld\n", sizeof(float)); printf("sizeof(long) = %ld\n", sizeof(long)); printf("sizeof(long long) = %ld\n", sizeof(long long)); printf("sizeof(double) = %ld\n", sizeof(double)); return 0; }

例2:结构体占用的内存大小–默认规则
考虑下面的结构体占用的位数
struct yikou_s { double d; char c; int i; } yikou_t;
执行结果
sizeof(yikou_t) = 16
在内容中各变量位置关系如下:
其中成员C的位置
还受字节序的影响,有的可能在位置8
编译器给我们进行了内存对齐,各成员变量存放的起始地址相对于结构的起始地址的偏移量必须为该变量类型所占用的字节数的倍数, 且结构的大小为该结构中占用最大空间的类型所占用的字节数的倍数。
对于偏移量:变量type n起始地址相对于结构体起始地址的偏移量必须为sizeof(type(n))的倍数结构体大小:必须为成员最大类型字节的倍数
char: 偏移量必须为sizeof(char) 即1的倍数 int: 偏移量必须为sizeof(int) 即4的倍数 float: 偏移量必须为sizeof(float) 即4的倍数 double: 偏移量必须为sizeof(double) 即8的倍数
例3:调整结构体大小
我们将结构体中变量的位置做以下调整:
struct yikou_s { char c; double d; int i; } yikou_t;
执行结果
sizeof(yikou_t) = 24
各变量在内存中布局如下:

当结构体中有嵌套符合成员时,复合成员相对于结构体首地址偏移量是复合成员最宽基本类型大小的整数倍。
例4:#pragma pack(4)
#pragma pack(4) struct yikou_s { char c; double d; int i; } yikou_t; sizeof(yikou_t) = 16
例5:#pragma pack(8)
#pragma pack(8) struct yikou_s { char c; double d; int i; } yikou_t; sizeof(yikou_t) = 24
例6:汇编代码
举例:以下是截取的uboot代码中异常向量irq、fiq的入口位置代码:
六、汇总实力
有手懒的同学,直接贴一个完整的例子给你们:
#include main() { struct A { int a; char b; short c; }; struct B { char b; int a; short c; }; struct AA { // int a; char b; short c; }; struct BB { char b; // int a; short c; }; #pragma pack (2) /*指定按2字节对齐*/ struct C { char b; int a; short c; }; #pragma pack () /*取消指定对齐,恢复缺省对齐*/ #pragma pack (1) /*指定按1字节对齐*/ struct D { char b; int a; short c; }; #pragma pack ()/*取消指定对齐,恢复缺省对齐*/ int s1=sizeof(struct A); int s2=sizeof(struct AA); int s3=sizeof(struct B); int s4=sizeof(struct BB); int s5=sizeof(struct C); int s6=sizeof(struct D); printf("%d\n",s1); printf("%d\n",s2); printf("%d\n",s3); printf("%d\n",s4); printf("%d\n",s5); printf("%d\n",s6); }
The above is the detailed content of Things about Linux byte alignment. For more information, please follow other related articles on the PHP Chinese website!

linux设备节点是应用程序和设备驱动程序沟通的一个桥梁;设备节点被创建在“/dev”,是连接内核与用户层的枢纽,相当于硬盘的inode一样的东西,记录了硬件设备的位置和信息。设备节点使用户可以与内核进行硬件的沟通,读写设备以及其他的操作。

区别:1、open是UNIX系统调用函数,而fopen是ANSIC标准中的C语言库函数;2、open的移植性没fopen好;3、fopen只能操纵普通正规文件,而open可以操作普通文件、网络套接字等;4、open无缓冲,fopen有缓冲。

端口映射又称端口转发,是指将外部主机的IP地址的端口映射到Intranet中的一台计算机,当用户访问外网IP的这个端口时,服务器自动将请求映射到对应局域网内部的机器上;可以通过使用动态或固定的公共网络IP路由ADSL宽带路由器来实现。

在linux中,eof是自定义终止符,是“END Of File”的缩写;因为是自定义的终止符,所以eof就不是固定的,可以随意的设置别名,linux中按“ctrl+d”就代表eof,eof一般会配合cat命令用于多行文本输出,指文件末尾。

在linux中,可以利用“rpm -qa pcre”命令判断pcre是否安装;rpm命令专门用于管理各项套件,使用该命令后,若结果中出现pcre的版本信息,则表示pcre已经安装,若没有出现版本信息,则表示没有安装pcre。

在linux中,交叉编译是指在一个平台上生成另一个平台上的可执行代码,即编译源代码的平台和执行源代码编译后程序的平台是两个不同的平台。使用交叉编译的原因:1、目标系统没有能力在其上进行本地编译;2、有能力进行源代码编译的平台与目标平台不同。

在linux中,rpc是远程过程调用的意思,是Reomote Procedure Call的缩写,特指一种隐藏了过程调用时实际通信细节的IPC方法;linux中通过RPC可以充分利用非共享内存的多处理器环境,提高系统资源的利用率。

linux查询mac地址的方法:1、打开系统,在桌面中点击鼠标右键,选择“打开终端”;2、在终端中,执行“ifconfig”命令,查看输出结果,在输出信息第四行中紧跟“ether”单词后的字符串就是mac地址。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version
SublimeText3 Linux latest version
