search
HomeJavajavaTutorialUnderstand the role of volatile in Java: ensuring the visibility and orderliness of data between multiple threads

Understand the role of volatile in Java: ensuring the visibility and orderliness of data between multiple threads

Jan 30, 2024 am 08:53 AM
javaMultithreadingvolatilejava multithreadingSynchronization mechanism

Understand the role of volatile in Java: ensuring the visibility and orderliness of data between multiple threads

Understand the role of volatile in Java: to ensure the visibility and orderliness of data between multiple threads, specific code examples are needed

In Java multi-thread programming, in order to To ensure data synchronization between multiple threads, we often need to use the volatile keyword. The volatile keyword can ensure visibility and ordering, ensuring that multiple threads' read and write operations on a certain variable are correct.

1. Visibility

In a multi-threaded environment, if one thread modifies a shared variable, it is uncertain whether other threads can immediately see the modification result. It's a matter of visibility.

By using the volatile keyword, you can ensure that writes to volatile variables are visible to other threads. That is, when one thread modifies the value of a volatile variable, other threads can immediately see the modified value.

The following is an example:

public class VolatileDemo {

private volatile boolean flag = false;

public void writeFlag() {
    flag = true;
}

public void readFlag() {
    while (!flag) {
        // 无限循环,等待flag变为true
    }
    System.out.println("flag is true");
}

public static void main(String[] args) {
    VolatileDemo demo = new VolatileDemo();

    Thread writeThread = new Thread(() -> {
        demo.writeFlag();
    });

    Thread readThread = new Thread(() -> {
        demo.readFlag();
    });

    writeThread.start();
    readThread.start();
}

}

In the above example, we created a VolatileDemo class and defined A variable flag of volatile boolean type is obtained. The writeFlag method is used to set the flag to true, and the readFlag method is used to output a piece of information after waiting for the flag to become true.

In the main method, we create two threads, one thread executes the writeFlag method, and the other thread executes the readFlag method. Since flag is a volatile variable, when the writeFlag method sets the flag to true, the readFlag method will immediately see this modification.

2. Orderliness

In a multi-threaded environment, even if a shared variable is visible, the order in which multiple threads operate on this variable cannot be determined. This is because Sequential issues.

By using the volatile keyword, you can ensure that the read and write operations of volatile variables are executed in the order of the code. That is to say, when one thread modifies the value of a volatile variable, other threads will immediately see the modification, and the modification will be executed in the order of the code.

The following is an example:

public class VolatileDemo {

private volatile int count = 0;

public void increaseCount() {
    count++;
}

public void printCount() {
    System.out.println(count);
}

public static void main(String[] args) {
    VolatileDemo demo = new VolatileDemo();

    Thread increaseThread = new Thread(() -> {
        for (int i = 0; i < 1000; i++) {
            demo.increaseCount();
        }
    });

    Thread printThread = new Thread(() -> {
        for (int i = 0; i < 10; i++) {
            demo.printCount();
        }
    });

    increaseThread.start();
    printThread.start();
}

}

In the above example, we created a VolatileDemo class and defined A volatile int type variable count. The increaseCount method is used to increase count by 1, and the printCount method is used to output the value of count.

In the main method, we create two threads, one thread executes the increaseCount method, and the other thread executes the printCount method. Since count is a volatile variable, when the increaseCount method modifies the value of count, the printCount method will immediately see the modification, and the modification will be executed in the order of the code.

Summary:

By using the volatile keyword, we can ensure the visibility and ordering of shared variables between multiple threads. In some cases, we may need to use the synchronization mechanism provided by other Thread classes, such as the synchronized keyword or Lock interface, to implement more complex multi-threaded operations. However, in simple multi-threaded scenarios, visibility and ordering issues can be solved well using the volatile keyword.

The above is the detailed content of Understand the role of volatile in Java: ensuring the visibility and orderliness of data between multiple threads. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How does the class loader subsystem in the JVM contribute to platform independence?How does the class loader subsystem in the JVM contribute to platform independence?Apr 23, 2025 am 12:14 AM

The class loader ensures the consistency and compatibility of Java programs on different platforms through unified class file format, dynamic loading, parent delegation model and platform-independent bytecode, and achieves platform independence.

Does the Java compiler produce platform-specific code? Explain.Does the Java compiler produce platform-specific code? Explain.Apr 23, 2025 am 12:09 AM

The code generated by the Java compiler is platform-independent, but the code that is ultimately executed is platform-specific. 1. Java source code is compiled into platform-independent bytecode. 2. The JVM converts bytecode into machine code for a specific platform, ensuring cross-platform operation but performance may be different.

How does the JVM handle multithreading on different operating systems?How does the JVM handle multithreading on different operating systems?Apr 23, 2025 am 12:07 AM

Multithreading is important in modern programming because it can improve program responsiveness and resource utilization and handle complex concurrent tasks. JVM ensures the consistency and efficiency of multithreads on different operating systems through thread mapping, scheduling mechanism and synchronization lock mechanism.

What does 'platform independence' mean in the context of Java?What does 'platform independence' mean in the context of Java?Apr 23, 2025 am 12:05 AM

Java's platform independence means that the code written can run on any platform with JVM installed without modification. 1) Java source code is compiled into bytecode, 2) Bytecode is interpreted and executed by the JVM, 3) The JVM provides memory management and garbage collection functions to ensure that the program runs on different operating systems.

Can Java applications still encounter platform-specific bugs or issues?Can Java applications still encounter platform-specific bugs or issues?Apr 23, 2025 am 12:03 AM

Javaapplicationscanindeedencounterplatform-specificissuesdespitetheJVM'sabstraction.Reasonsinclude:1)Nativecodeandlibraries,2)Operatingsystemdifferences,3)JVMimplementationvariations,and4)Hardwaredependencies.Tomitigatethese,developersshould:1)Conduc

How does cloud computing impact the importance of Java's platform independence?How does cloud computing impact the importance of Java's platform independence?Apr 22, 2025 pm 07:05 PM

Cloud computing significantly improves Java's platform independence. 1) Java code is compiled into bytecode and executed by the JVM on different operating systems to ensure cross-platform operation. 2) Use Docker and Kubernetes to deploy Java applications to improve portability and scalability.

What role has Java's platform independence played in its widespread adoption?What role has Java's platform independence played in its widespread adoption?Apr 22, 2025 pm 06:53 PM

Java'splatformindependenceallowsdeveloperstowritecodeonceandrunitonanydeviceorOSwithaJVM.Thisisachievedthroughcompilingtobytecode,whichtheJVMinterpretsorcompilesatruntime.ThisfeaturehassignificantlyboostedJava'sadoptionduetocross-platformdeployment,s

How do containerization technologies (like Docker) affect the importance of Java's platform independence?How do containerization technologies (like Docker) affect the importance of Java's platform independence?Apr 22, 2025 pm 06:49 PM

Containerization technologies such as Docker enhance rather than replace Java's platform independence. 1) Ensure consistency across environments, 2) Manage dependencies, including specific JVM versions, 3) Simplify the deployment process to make Java applications more adaptable and manageable.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.