


An in-depth discussion of the memory allocation and expansion strategies of Golang slices
In-depth analysis of Golang slicing principle: memory allocation and expansion strategy
Introduction:
Slicing is one of the commonly used data types in Golang, which provides convenient way to operate on continuous data sequences. When using slices, it is important to understand its internal memory allocation and expansion strategies to improve program performance. In this article, we will provide an in-depth analysis of the principles of Golang slicing, accompanied by specific code examples.
1. The memory structure and basic principles of slicing
In Golang, a slice is a reference type to the underlying array and does not directly hold any data itself. The memory structure of a slice mainly consists of three parts: a pointer to the underlying array, the length of the slice, and the capacity of the slice. Among them, the length of the slice refers to the number of current elements in the slice, and the capacity of the slice refers to the number from the starting position of the slice to the last element of the underlying array.
When we create a slice through the make function, Golang will allocate a contiguous memory block in memory as the underlying array and return a pointer to this memory block. At the same time, a slice object is also created, which contains a pointer to the underlying array, the length of the slice, and the capacity of the slice. This way, we can access and manipulate the underlying array through the slice object.
2. Memory allocation strategy of slices
When we append elements to a slice, if the capacity of the underlying array is not enough to accommodate the new elements, Golang will reallocate the memory through the memory allocation strategy. , and copies the original elements to the new memory space.
Golang's memory allocation strategy adopts an exponential growth method, that is, when the capacity of the underlying array is insufficient, it will be expanded by 2 times the original capacity. Specifically, when the capacity of the underlying array is less than 1024, the expansion will be performed at 2 times the capacity; when the capacity of the underlying array is greater than or equal to 1024, the expansion will be performed at 1.25 times the capacity. The design of this strategy can not only effectively reduce memory waste, but also improve program performance.
3. Code example of slice expansion process
Below, we will demonstrate the slice expansion process through a specific code example. Suppose we have a slice with an initial capacity of 4 and we want to append elements to it.
package main import "fmt" func main() { s := make([]int, 0, 4) fmt.Printf("初始切片的长度:%d,容量:%d ", len(s), cap(s)) for i := 0; i < 10; i++ { s = append(s, i) fmt.Printf("追加第%d个元素后,切片的长度:%d,容量:%d ", i+1, len(s), cap(s)) } }
The output results are as follows:
初始切片的长度:0,容量:4 追加第1个元素后,切片的长度:1,容量:4 追加第2个元素后,切片的长度:2,容量:4 追加第3个元素后,切片的长度:3,容量:4 追加第4个元素后,切片的长度:4,容量:4 追加第5个元素后,切片的长度:5,容量:8 追加第6个元素后,切片的长度:6,容量:8 追加第7个元素后,切片的长度:7,容量:8 追加第8个元素后,切片的长度:8,容量:8 追加第9个元素后,切片的长度:9,容量:16 追加第10个元素后,切片的长度:10,容量:16
As can be seen from the output results, in the initial state, the capacity of the slice is 4. When the fourth element is appended, the capacity of the slice is not enough to accommodate the new element. At this time, Golang will reallocate the memory and expand the capacity of the underlying array to 8. Similarly, when the ninth element is appended, the capacity of the underlying array is insufficient again, and the capacity is expanded to 16. This exponentially increasing memory allocation strategy can improve program performance in most cases.
Conclusion:
Through an in-depth analysis of Golang slices, we understand that slices are a reference type to the underlying array, and their internal memory allocation and expansion strategies are very important. Golang's slicing uses an exponential growth method to allocate memory. This strategy can effectively reduce memory waste and improve program performance. In actual programming, we should make reasonable use of the characteristics of slices and pay attention to the impact of memory allocation and expansion to optimize and improve program efficiency.
The above is the detailed content of An in-depth discussion of the memory allocation and expansion strategies of Golang slices. For more information, please follow other related articles on the PHP Chinese website!

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Reasons for choosing Golang include: 1) high concurrency performance, 2) static type system, 3) garbage collection mechanism, 4) rich standard libraries and ecosystems, which make it an ideal choice for developing efficient and reliable software.

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Golang performs better in compilation time and concurrent processing, while C has more advantages in running speed and memory management. 1.Golang has fast compilation speed and is suitable for rapid development. 2.C runs fast and is suitable for performance-critical applications. 3. Golang is simple and efficient in concurrent processing, suitable for concurrent programming. 4.C Manual memory management provides higher performance, but increases development complexity.

Golang's application in web services and system programming is mainly reflected in its simplicity, efficiency and concurrency. 1) In web services, Golang supports the creation of high-performance web applications and APIs through powerful HTTP libraries and concurrent processing capabilities. 2) In system programming, Golang uses features close to hardware and compatibility with C language to be suitable for operating system development and embedded systems.

Golang and C have their own advantages and disadvantages in performance comparison: 1. Golang is suitable for high concurrency and rapid development, but garbage collection may affect performance; 2.C provides higher performance and hardware control, but has high development complexity. When making a choice, you need to consider project requirements and team skills in a comprehensive way.

Golang is suitable for high-performance and concurrent programming scenarios, while Python is suitable for rapid development and data processing. 1.Golang emphasizes simplicity and efficiency, and is suitable for back-end services and microservices. 2. Python is known for its concise syntax and rich libraries, suitable for data science and machine learning.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version
Visual web development tools