search
HomeTechnology peripheralsAIApplication of attention mechanism in NLP in natural language processing

Application of attention mechanism in NLP in natural language processing

The concept of attention

The concept of attention is well known in the seq2seq model of neural machine translation. The amount of information passed from the encoder to the decoder is limited, limiting the performance of the model. However, the introduction of attention can overcome this bottleneck and enable the model to better handle long sentences and complex semantics.

Simply put, the model utilizes all hidden states of the encoder during the decoding stage and feeds the final hidden state to the decoder as the initial hidden state. The benefit of this is that the model is able to utilize more information during decoding and is able to "pay attention" to the most relevant parts of the input sequence, making more accurate predictions when generating different parts of the output sequence.

General framework ideas of attention

Although attention mechanisms differ in different architectures and implementation details, they also have Something in common. For example, consider a scenario where we want to make predictions using a neural network with a certain architecture. In this case, we get a vector containing some encoded information. We can use this vector for prediction, such as inputting it into a fully connected layer, and then processing it through a softmax layer. Although the specific processing steps may vary, the basic idea is similar across different architectures.

However, its prediction results proved unsatisfactory. There may be many reasons, the following is a possible idea:

1. The vector used does not contain all the information useful for achieving good predictions.

Often, the information required to make good predictions will be distributed among many vectors, such as in the case of NLP tasks, where there is a sequence of vectors encoded by a marker. Although all distributed information has been accounted for, some information will inevitably be lost as it flows deeper within the neural network.

2. What is useful is not only the individual pieces of information contained in these vectors, but also their relationship to the current vector.

The current vector may need to interact and communicate with other vectors and help determine what information to pass. Therefore, a smarter way is needed to combine all the potentially useful vectors you have and allow the model to learn what to pay attention to in order to make better predictions.

After considering these two points, assume that there is now such a vector and other qualified vectors. These vectors are important for making predictions, and the method of processing this information is A general framework for attention.

In this framework, accept the query and let it interact with the keys one by one:

1. The specific relationship between the query and each key Interactions, which can be inner products or additions or combinations of connections and feeding into small neural networks etc. Each different key of the query is processed using the same operation with the same parameters trained from backpropagation. Furthermore, it is required that the final output after these operations is a single value. These output values ​​are called energy. After repeating this process on the query and all key vectors, a series of energies will be obtained.
2. Use softmax layer to normalize all energies.
3. Perform a weighted sum of the value vectors, and the weight is the normalized energy. This produces a context vector with the same dimensions as a value vector containing information about all elements combined in an intelligent way.
4. Context vectors and query vectors can be used together to make predictions, for example, concatenating them and feeding them to the neural network as needed, followed by a softmax layer.

The above is the process of the general framework of attention. Let’s take a look at how this framework is applied to different tasks.

Emotional analysis task

The emotional analysis type task is a classification task, the input is a piece of text, and the output is corresponding to one of the Labels for possible emotions. Before text is fed into a neural network, it needs to be cleaned, formatted, tokenized, and converted into a series of vocabulary-based indexes. Although this is not seq2seq but seq2one, the attention mechanism still applies and helps improve performance.

Ordinary one-way or two-way LSTM-based networks can be used to perform this task. In this case, only the final hidden state of the last layer (unidirectional) or the two final hidden states (bidirectional, one from forward and one from backward) are used for prediction by passing to the classification head, e.g. fully connected layers and softmax. The limited information carried only by the final hidden state sets a bottleneck for the model's performance.

Date translation task

Date translation is an example of a character-level seq2seq task. The goal of this task is to take a human-readable date as input, such as "December 27, 2022", and output a machine-readable date representing the same date as the input, such as "2022-12-27".

Attention-based models have an attention block before the LSTM unit in the decoder. At each loop step, the output context vector of the attention block and the output of the last step are concatenated and then fed to the LSTM unit. Another implementation of attention is to concatenate the attention block with the output vector of the current step after the LSTM unit and the output context vector, which is then fed to a fully connected layer to predict the next token. The attention block here follows the general framework, the key and value vectors are the same set of vectors, i.e. the hidden states of the last layer of the encoder, and the interaction between the query and each key is a small neural network.

During the decoding stage, the one-way LSTM predicts one token at a time, so the input to each step has two choices: the token predicted by the current step from the previous step output or the ground truth. Here a hyperparameter can be defined to control what percentage of the input tokens used during training are ground truth and can be experimented with to optimize model performance.

The above is the detailed content of Application of attention mechanism in NLP in natural language processing. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:网易伏羲. If there is any infringement, please contact admin@php.cn delete
Are You At Risk Of AI Agency Decay? Take The Test To Find OutAre You At Risk Of AI Agency Decay? Take The Test To Find OutApr 21, 2025 am 11:31 AM

This article explores the growing concern of "AI agency decay"—the gradual decline in our ability to think and decide independently. This is especially crucial for business leaders navigating the increasingly automated world while retainin

How to Build an AI Agent from Scratch? - Analytics VidhyaHow to Build an AI Agent from Scratch? - Analytics VidhyaApr 21, 2025 am 11:30 AM

Ever wondered how AI agents like Siri and Alexa work? These intelligent systems are becoming more important in our daily lives. This article introduces the ReAct pattern, a method that enhances AI agents by combining reasoning an

Revisiting The Humanities In The Age Of AIRevisiting The Humanities In The Age Of AIApr 21, 2025 am 11:28 AM

"I think AI tools are changing the learning opportunities for college students. We believe in developing students in core courses, but more and more people also want to get a perspective of computational and statistical thinking," said University of Chicago President Paul Alivisatos in an interview with Deloitte Nitin Mittal at the Davos Forum in January. He believes that people will have to become creators and co-creators of AI, which means that learning and other aspects need to adapt to some major changes. Digital intelligence and critical thinking Professor Alexa Joubin of George Washington University described artificial intelligence as a “heuristic tool” in the humanities and explores how it changes

Understanding LangChain Agent FrameworkUnderstanding LangChain Agent FrameworkApr 21, 2025 am 11:25 AM

LangChain is a powerful toolkit for building sophisticated AI applications. Its agent architecture is particularly noteworthy, allowing developers to create intelligent systems capable of independent reasoning, decision-making, and action. This expl

What are the Radial Basis Functions Neural Networks?What are the Radial Basis Functions Neural Networks?Apr 21, 2025 am 11:13 AM

Radial Basis Function Neural Networks (RBFNNs): A Comprehensive Guide Radial Basis Function Neural Networks (RBFNNs) are a powerful type of neural network architecture that leverages radial basis functions for activation. Their unique structure make

The Meshing Of Minds And Machines Has ArrivedThe Meshing Of Minds And Machines Has ArrivedApr 21, 2025 am 11:11 AM

Brain-computer interfaces (BCIs) directly link the brain to external devices, translating brain impulses into actions without physical movement. This technology utilizes implanted sensors to capture brain signals, converting them into digital comman

Insights on spaCy, Prodigy and Generative AI from Ines MontaniInsights on spaCy, Prodigy and Generative AI from Ines MontaniApr 21, 2025 am 11:01 AM

This "Leading with Data" episode features Ines Montani, co-founder and CEO of Explosion AI, and co-developer of spaCy and Prodigy. Ines offers expert insights into the evolution of these tools, Explosion's unique business model, and the tr

A Guide to Building Agentic RAG Systems with LangGraphA Guide to Building Agentic RAG Systems with LangGraphApr 21, 2025 am 11:00 AM

This article explores Retrieval Augmented Generation (RAG) systems and how AI agents can enhance their capabilities. Traditional RAG systems, while useful for leveraging custom enterprise data, suffer from limitations such as a lack of real-time dat

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools