


Methods and prerequisites for implementing linear regression using normal equations
Normal equations are a simple and intuitive method for linear regression. The best-fit straight line is calculated directly through mathematical formulas without using iterative algorithms. This method is particularly suitable for small data sets.
First, let’s review the basic principles of linear regression. Linear regression is a method used to predict the relationship between a dependent variable Y and one or more independent variables X. There is only one independent variable X in simple linear regression, while two or more independent variables are included in multiple linear regression.
In linear regression, we use the least squares method to fit a straight line to minimize the sum of distances from data points to the straight line. The equation of the straight line is:
Y=β0 β1X1 β2X2 … βnXn
The goal of the equation is to find the best intercept and regression coefficient to to best fit the data.
Now, let’s see how to use the normal equation to calculate the optimal β0 to βn. The basic idea of normal equations is that we can get the optimal regression coefficients by solving a system of linear equations.
The form of this system of linear equations is as follows:
(XT X)β=XT Y
Among them, X is the matrix of independent variables, Y is the vector of dependent variables, XT is the transpose of X, and β is the vector of regression coefficients. In this system of equations, we need to solve for β.
Next, we need to convert this system of equations into a form that can be solved. We can accomplish this step by multiplying both sides of the system of equations by the inverse matrix of (XT). In this way, the system of equations becomes normal. The core idea of the equation is to obtain the optimal regression coefficient by solving a system of linear equations. The form of this system of equations is (XT X)β=XT Y, where X is the matrix of independent variables, Y is the vector of dependent variables, XT is the transpose of We can solve for β by multiplying both sides of the system of equations by the inverse matrix of (XT). This method is very simple and easy to understand, and works well for small data sets. However, it should be noted that the computational complexity of the normal equation is O(n^3), so this method may not be suitable when dealing with large data sets.
The advantage of the normal equation is that it can directly calculate the optimal regression coefficient without using an iterative algorithm. In addition, the solution of this method is unique, so there is no problem of multiple local optimal solutions.
However, normal equations also have some disadvantages. First, it requires computing the inverse matrix of (XT X), which may cause numerical stability problems. If the matrix (XT Furthermore, the normal equations with computational complexity of O(n^3) can become very slow when dealing with large data sets, so iterative algorithms may be more suitable for this case.
When using normal equations for linear regression, the following conditions also need to be met:
1. Linear relationship
Normal equations are only applicable to data with linear relationships, that is, the relationship between the dependent variable and the independent variable must be linear. If the data does not satisfy a linear relationship, then the normal equation cannot obtain a good fitting model.
2. No multicollinearity
Multicollinearity refers to the situation where there is a high degree of correlation between independent variables. If multicollinearity is present, the normal equation may not result in an accurate fitting model. In practical applications, multicollinearity can be checked by calculating the correlation coefficients between independent variables.
3. Data independence
The formal equation requires that the data be independent, that is, there is no correlation between the data of each sample. If the data are not independent, then the normal equation may yield a biased model fit.
4. Homogeneity of variances
Homogeneity of variances means that the variance of the dependent variable should remain equal under different values of the independent variables. If the variances are not homogeneous, then the normal equation may result in an inaccurately fitted model. In practical applications, homogeneity of variances can be checked by plotting the residuals.
5. The error obeys the normal distribution
The normal equation requires that the error obeys the normal distribution, that is, the residual error should be random and consistent with Properties of the normal distribution. If the errors are not normally distributed, then the normal equation may result in an inaccurately fitted model.
It should be noted that the above conditions are not independent of each other, and they may affect each other. In practical applications, we need to comprehensively consider these conditions and select an appropriate regression model based on the characteristics of the data. If the data does not meet the conditions of the normal equation, you can consider using other regression methods, such as ridge regression, lasso regression, etc.
In summary, the normal equation is a simple and easy-to-understand linear regression method suitable for small data sets. But when dealing with large data sets, you need to pay attention to the issue of computational complexity and consider using other methods.
The above is the detailed content of Methods and prerequisites for implementing linear regression using normal equations. For more information, please follow other related articles on the PHP Chinese website!

This article explores the growing concern of "AI agency decay"—the gradual decline in our ability to think and decide independently. This is especially crucial for business leaders navigating the increasingly automated world while retainin

Ever wondered how AI agents like Siri and Alexa work? These intelligent systems are becoming more important in our daily lives. This article introduces the ReAct pattern, a method that enhances AI agents by combining reasoning an

"I think AI tools are changing the learning opportunities for college students. We believe in developing students in core courses, but more and more people also want to get a perspective of computational and statistical thinking," said University of Chicago President Paul Alivisatos in an interview with Deloitte Nitin Mittal at the Davos Forum in January. He believes that people will have to become creators and co-creators of AI, which means that learning and other aspects need to adapt to some major changes. Digital intelligence and critical thinking Professor Alexa Joubin of George Washington University described artificial intelligence as a “heuristic tool” in the humanities and explores how it changes

LangChain is a powerful toolkit for building sophisticated AI applications. Its agent architecture is particularly noteworthy, allowing developers to create intelligent systems capable of independent reasoning, decision-making, and action. This expl

Radial Basis Function Neural Networks (RBFNNs): A Comprehensive Guide Radial Basis Function Neural Networks (RBFNNs) are a powerful type of neural network architecture that leverages radial basis functions for activation. Their unique structure make

Brain-computer interfaces (BCIs) directly link the brain to external devices, translating brain impulses into actions without physical movement. This technology utilizes implanted sensors to capture brain signals, converting them into digital comman

This "Leading with Data" episode features Ines Montani, co-founder and CEO of Explosion AI, and co-developer of spaCy and Prodigy. Ines offers expert insights into the evolution of these tools, Explosion's unique business model, and the tr

This article explores Retrieval Augmented Generation (RAG) systems and how AI agents can enhance their capabilities. Traditional RAG systems, while useful for leveraging custom enterprise data, suffer from limitations such as a lack of real-time dat


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version
Useful JavaScript development tools

Atom editor mac version download
The most popular open source editor

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software