Python执行avl树,代码详情:
import sys #创建树节点 class TreeNode(object): def __init__(self,key): self.key=key self.left=None self.right=None self.height=1 class AVLTree(object): #插入节点 def insert_node(self,root,key): #找到位置并插入节点 if not root: return TreeNode(key) elif key<root.key: root.left=self.insert_node(root.left,key) else: root.right=self.insert_node(root.right,key) root.height=1+max(self.getHeight(root.left), self.getHeight(root.right)) #更新节点 balanceFactor=self.getBalance(root) if balanceFactor>1: if key<root.left.key: return self.rightRotate(root) else: root.left=self.leftRotate(root.left) return self.rightRotate(root) if balanceFactor<-1: if key>root.right.key: return self.leftRotate(root) else: root.right=self.rightRotate(root.right) return self.leftRotate(root) return root #删除节点 def delete_node(self,root,key): #找到要删除的节点并删除 if not root: return root elif key<root.key: root.left=self.delete_node(root.left,key) elif key>root.key: root.right=self.delete_node(root.right,key) else: if root.left is None: temp=root.right root=None return temp elif root.right is None: temp=root.left root=None return temp temp=self.getMinValueNode(root.right) root.key=temp.key root.right=self.delete_node(root.right, temp.key) if root is None: return root #更新节点 root.height=1+max(self.getHeight(root.left), self.getHeight(root.right)) balanceFactor=self.getBalance(root) #平衡树 if balanceFactor>1: if self.getBalance(root.left)>=0: return self.rightRotate(root) else: root.left=self.leftRotate(root.left) return self.rightRotate(root) if balanceFactor<-1: if self.getBalance(root.right)<=0: return self.leftRotate(root) else: root.right=self.rightRotate(root.right) return self.leftRotate(root) return root #左旋转 def leftRotate(self,z): y=z.right T2=y.left y.left=z z.right=T2 z.height=1+max(self.getHeight(z.left), self.getHeight(z.right)) y.height=1+max(self.getHeight(y.left), self.getHeight(y.right)) return y #右旋转 def rightRotate(self,z): y=z.left T3=y.right y.right=z z.left=T3 z.height=1+max(self.getHeight(z.left), self.getHeight(z.right)) y.height=1+max(self.getHeight(y.left), self.getHeight(y.right)) return y #获取节点高度 def getHeight(self,root): if not root: return 0 return root.height #平衡节点 def getBalance(self,root): if not root: return 0 return self.getHeight(root.left)-self.getHeight(root.right) def getMinValueNode(self,root): if root is None or root.left is None: return root return self.getMinValueNode(root.left) def preOrder(self,root): if not root: return print("{0}".format(root.key),end="") self.preOrder(root.left) self.preOrder(root.right) #输出avl树 def printHelper(self,currPtr,indent,last): if currPtr!=None: sys.stdout.write(indent) if last: sys.stdout.write("R----") indent+="" else: sys.stdout.write("L----") indent+="|" print(currPtr.key) self.printHelper(currPtr.left,indent,False) self.printHelper(currPtr.right,indent,True) myTree=AVLTree() root=None nums=[33,13,52,9,21,61,8,11] for num in nums: root=myTree.insert_node(root,num) myTree.printHelper(root,"",True) key=13 root=myTree.delete_node(root,key) print("After Deletion:") myTree.printHelper(root,"",True)
The above is the detailed content of How to implement avl tree operations in Python. For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version
