Multidimensional scaling (multidimensional scaling) is an unsupervised learning method used to map high-dimensional data to a low-dimensional space to demonstrate the similarities and differences between data. This is a non-parametric method that requires no assumptions about the data distribution and is therefore applicable to a variety of data types and domains. Through multidimensional scaling, we are able to better understand and interpret the data by reducing its dimensionality while retaining its key features. This method can help us discover patterns and structures hidden in the data, providing valuable guidance for subsequent data analysis and decision-making.
The core idea of multidimensional scaling is to map each sample point in high-dimensional data to a point in low-dimensional space and retain the samples in the original high-dimensional data as accurately as possible Similarity or distance relationship between points. Multidimensional scaling is widely used in data visualization, data dimensionality reduction, cluster analysis, classification and other fields. It projects high-dimensional data into a low-dimensional space by calculating the distance or similarity between sample points to better understand and analyze the data. Through the application of multidimensional scaling, we are able to more clearly observe and interpret patterns, trends, and correlations in data, thereby improving the accuracy of decision-making and forecasting.
There are two common algorithms for multidimensional scaling, namely metric multidimensional scaling and non-metric multidimensional scaling.
Metric multidimensional scaling, also known as distance-based multidimensional scaling, assumes that the distance between sample points is known in high-dimensional space and can be measured by Euclidean distance or other distance measurement methods calculate. After mapping to a low-dimensional space, the distance between sample points should be as consistent as possible with the original distance. The goal is to minimize the difference between the distance of sample points in low-dimensional space and the distance in high-dimensional space, which can be achieved using optimization algorithms.
Non-metric multidimensional scaling, also known as ranking-based multidimensional scaling, assumes that the distance between sample points is unknown in high-dimensional space, and only the relative order between them is known . After mapping to a low-dimensional space, the order between sample points should match the original order as much as possible. The goal of nonmetric multidimensional scaling is to minimize the difference between the order of sample points in a low-dimensional space and the order in a high-dimensional space. To achieve this process, optimization algorithms can be used.
Multidimensional scaling is widely used. The following are several common application scenarios:
1. Data visualization: Multidimensional scaling can combine high Dimensional data is mapped into two-dimensional or three-dimensional space to enable data visualization. This visualization method can help people better understand the similarities and differences between data, allowing for better data analysis and decision-making.
2. Data dimensionality reduction: Multidimensional scaling can map high-dimensional data into a low-dimensional space, thereby achieving data dimensionality reduction. This dimensionality reduction method can help people reduce the dimensions of data, thereby saving computing resources and improving algorithm efficiency.
3. Cluster analysis: Multidimensional scaling can map the sample points in the data into a low-dimensional space and cluster similar sample points together. This clustering method can help people better understand the similarities and differences between data, so as to better perform cluster analysis and classification.
4. Feature selection: Multidimensional scaling can map the features in the data into a low-dimensional space and filter based on the importance of the features in the low-dimensional space. This feature selection method can help people select the most representative features, thereby improving the algorithm effect and reducing the consumption of computing resources.
In short, multidimensional scaling is a very important machine learning method. It can help people better understand the similarities and differences in data, thereby achieving data visualization and dimensionality reduction. , clustering and feature selection tasks. In practical applications, it is necessary to select appropriate multidimensional scaling algorithms and parameters according to specific needs, and evaluate and optimize the results to achieve the best results. At the same time, multidimensional scaling also has its limitations, such as being sensitive to data noise and outliers, requiring data preprocessing and outlier processing.
The above is the detailed content of Application of multi-scale in machine learning. For more information, please follow other related articles on the PHP Chinese website!

Since 2008, I've championed the shared-ride van—initially dubbed the "robotjitney," later the "vansit"—as the future of urban transportation. I foresee these vehicles as the 21st century's next-generation transit solution, surpas

Revolutionizing the Checkout Experience Sam's Club's innovative "Just Go" system builds on its existing AI-powered "Scan & Go" technology, allowing members to scan purchases via the Sam's Club app during their shopping trip.

Nvidia's Enhanced Predictability and New Product Lineup at GTC 2025 Nvidia, a key player in AI infrastructure, is focusing on increased predictability for its clients. This involves consistent product delivery, meeting performance expectations, and

Google's Gemma 2: A Powerful, Efficient Language Model Google's Gemma family of language models, celebrated for efficiency and performance, has expanded with the arrival of Gemma 2. This latest release comprises two models: a 27-billion parameter ver

This Leading with Data episode features Dr. Kirk Borne, a leading data scientist, astrophysicist, and TEDx speaker. A renowned expert in big data, AI, and machine learning, Dr. Borne offers invaluable insights into the current state and future traje

There were some very insightful perspectives in this speech—background information about engineering that showed us why artificial intelligence is so good at supporting people’s physical exercise. I will outline a core idea from each contributor’s perspective to demonstrate three design aspects that are an important part of our exploration of the application of artificial intelligence in sports. Edge devices and raw personal data This idea about artificial intelligence actually contains two components—one related to where we place large language models and the other is related to the differences between our human language and the language that our vital signs “express” when measured in real time. Alexander Amini knows a lot about running and tennis, but he still

Caterpillar's Chief Information Officer and Senior Vice President of IT, Jamie Engstrom, leads a global team of over 2,200 IT professionals across 28 countries. With 26 years at Caterpillar, including four and a half years in her current role, Engst

Google Photos' New Ultra HDR Tool: A Quick Guide Enhance your photos with Google Photos' new Ultra HDR tool, transforming standard images into vibrant, high-dynamic-range masterpieces. Ideal for social media, this tool boosts the impact of any photo,


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Linux new version
SublimeText3 Linux latest version