search
HomeTechnology peripheralsAIAI technology applied to document comparison

AI technology applied to document comparison

Jan 22, 2024 pm 09:24 PM
AIfeature engineering

AI technology applied to document comparison

The benefit of document comparison through AI is that it can automatically detect and quickly compare changes and differences between documents, saving time and labor and reducing the risk of human error. In addition, AI can process large amounts of text data, improve processing efficiency and accuracy, and can compare different versions of documents to help users quickly find the latest version and changed content.

AI document comparison usually includes two main steps: text preprocessing and text comparison. First, the text needs to be preprocessed to convert it into a computer-processable form. Then, the differences between the texts are determined by comparing their similarity. The following will take the comparison of two text files as an example to introduce this process in detail.

Text preprocessing

First, we need to preprocess the text. This includes operations such as word segmentation, stop word removal, and stemming so that computers can process the text. In this example, we can use the NLTK library in Python for preprocessing. Here is a simple code example: ```python import nltk from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.tokenize import word_tokenize # Download stopword and stemmer resources nltk.download('stopwords') nltk.download('punkt') # Define stopwords and stemmers stop_words = set(stopwords.words('english')) stemmer = PorterStemmer() # define text text = "This is an example sentence. We need to preprocess it." # Participle tokens = word_tokenize(text) # Remove stop words and stemming filtered_text = [stemmer.stem(word) for word in

import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer

def preprocess(text):
    # 分词
    tokens = word_tokenize(text.lower())
    # 去除停用词
    stop_words = set(stopwords.words('english'))
    filtered_tokens = [token for token in tokens if token not in stop_words]
    # 词干提取
    porter = PorterStemmer()
    stemmed_tokens = [porter.stem(token) for token in filtered_tokens]
    # 返回处理后的文本
    return stemmed_tokens

Calculating similarity

Next, we need to calculate the difference between the two texts similarity between. Commonly used methods include cosine similarity, Jaccard similarity, etc. In this example, we will use cosine similarity to compare the similarity of two texts. The following is a code example for calculating cosine similarity:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

def compare(text1, text2):
    # 对文本进行预处理
    processed_text1 = preprocess(text1)
    processed_text2 = preprocess(text2)
    # 将文本转化为TF-IDF向量
    tfidf_vectorizer = TfidfVectorizer()
    tfidf_matrix = tfidf_vectorizer.fit_transform([text1, text2])
    #计算文本间的余弦相似度
    similarity = cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]
    # 返回相似度
    return similarity

Now, we can combine the above two functions to write a complete text comparison program. The following is a code example:

import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

def preprocess(text):
    # 分词
    tokens = word_tokenize(text.lower())
    # 去除停用词
    stop_words = set(stopwords.words('english'))
    filtered_tokens = [token for token in tokens if token not in stop_words]
    # 词干提取
    porter = PorterStemmer()
    stemmed_tokens = [porter.stem(token) for token in filtered_tokens]
    # 返回处理后的文本
    return stemmed_tokens

def compare(text1, text2):
    # 对文本进行预处理
    processed_text1 = preprocess(text1)
    processed_text2 = preprocess(text2)
    # 将文本转化为TF-IDF向量
    tfidf_vectorizer = TfidfVectorizer()
    tfidf_matrix = tfidf_vectorizer.fit_transform([text1, text2])
    # 计算文本间的余弦相似度
    similarity = cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]
    # 返回相似度
    return similarity

if __name__ == '__main__':
    # 读取文件内容
    with open('file1.txt', 'r') as f1:
        text1 = f1.read()
    with open('file2.txt', 'r') as f2:
        text2 = f2.read()
    # 对比两个文件的文本相似度
    similarity = compare(text1, text2)
    print('The similarity between the two files is: ', similarity)

With the above code, we can read the contents of two text files and calculate the similarity between them.

It should be noted that the above program is just a simple example. Actual applications may require more complex text preprocessing and comparison methods, as well as the ability to process large amounts of text files. In addition, due to the complexity of text, text comparison does not always accurately reflect text differences, so sufficient testing and verification is required in practical applications.

The above is the detailed content of AI technology applied to document comparison. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:网易伏羲. If there is any infringement, please contact admin@php.cn delete
Microsoft Work Trend Index 2025 Shows Workplace Capacity StrainMicrosoft Work Trend Index 2025 Shows Workplace Capacity StrainApr 24, 2025 am 11:19 AM

The burgeoning capacity crisis in the workplace, exacerbated by the rapid integration of AI, demands a strategic shift beyond incremental adjustments. This is underscored by the WTI's findings: 68% of employees struggle with workload, leading to bur

Can AI Understand? The Chinese Room Argument Says No, But Is It Right?Can AI Understand? The Chinese Room Argument Says No, But Is It Right?Apr 24, 2025 am 11:18 AM

John Searle's Chinese Room Argument: A Challenge to AI Understanding Searle's thought experiment directly questions whether artificial intelligence can genuinely comprehend language or possess true consciousness. Imagine a person, ignorant of Chines

China's 'Smart' AI Assistants Echo Microsoft Recall's Privacy FlawsChina's 'Smart' AI Assistants Echo Microsoft Recall's Privacy FlawsApr 24, 2025 am 11:17 AM

China's tech giants are charting a different course in AI development compared to their Western counterparts. Instead of focusing solely on technical benchmarks and API integrations, they're prioritizing "screen-aware" AI assistants – AI t

Docker Brings Familiar Container Workflow To AI Models And MCP ToolsDocker Brings Familiar Container Workflow To AI Models And MCP ToolsApr 24, 2025 am 11:16 AM

MCP: Empower AI systems to access external tools Model Context Protocol (MCP) enables AI applications to interact with external tools and data sources through standardized interfaces. Developed by Anthropic and supported by major AI providers, MCP allows language models and agents to discover available tools and call them with appropriate parameters. However, there are some challenges in implementing MCP servers, including environmental conflicts, security vulnerabilities, and inconsistent cross-platform behavior. Forbes article "Anthropic's model context protocol is a big step in the development of AI agents" Author: Janakiram MSVDocker solves these problems through containerization. Doc built on Docker Hub infrastructure

Using 6 AI   Street-Smart Strategies To Build A Billion-Dollar StartupUsing 6 AI Street-Smart Strategies To Build A Billion-Dollar StartupApr 24, 2025 am 11:15 AM

Six strategies employed by visionary entrepreneurs who leveraged cutting-edge technology and shrewd business acumen to create highly profitable, scalable companies while maintaining control. This guide is for aspiring entrepreneurs aiming to build a

Google Photos Update Unlocks Stunning Ultra HDR For All Your PicturesGoogle Photos Update Unlocks Stunning Ultra HDR For All Your PicturesApr 24, 2025 am 11:14 AM

Google Photos' New Ultra HDR Tool: A Game Changer for Image Enhancement Google Photos has introduced a powerful Ultra HDR conversion tool, transforming standard photos into vibrant, high-dynamic-range images. This enhancement benefits photographers a

Descope Builds Authentication Framework For AI Agent IntegrationDescope Builds Authentication Framework For AI Agent IntegrationApr 24, 2025 am 11:13 AM

Technical Architecture Solves Emerging Authentication Challenges The Agentic Identity Hub tackles a problem many organizations only discover after beginning AI agent implementation that traditional authentication methods aren’t designed for machine-

Google Cloud Next 2025 And The Connected Future Of Modern WorkGoogle Cloud Next 2025 And The Connected Future Of Modern WorkApr 24, 2025 am 11:12 AM

(Note: Google is an advisory client of my firm, Moor Insights & Strategy.) AI: From Experiment to Enterprise Foundation Google Cloud Next 2025 showcased AI's evolution from experimental feature to a core component of enterprise technology, stream

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.