search
HomeTechnology peripheralsAIThe Swin moment of the visual Mamba model, the Chinese Academy of Sciences, Huawei and others launched VMamba

Transformer’s position in the field of large models is unshakable. However, as the model scale expands and the sequence length increases, the limitations of the traditional Transformer architecture begin to become apparent. Fortunately, the advent of Mamba is quickly changing this situation. Its outstanding performance immediately caused a sensation in the AI ​​community. The emergence of Mamba has brought huge breakthroughs to large-scale model training and sequence processing. Its advantages are spreading rapidly in the AI ​​community, bringing great hope for future research and applications.

Last Thursday, the introduction of Vision Mamba (Vim) has demonstrated its great potential to become the next generation backbone of the visual basic model. Just one day later, Researchers from the Chinese Academy of Sciences, Huawei, and Pengcheng Laboratory proposed VMamba:A visual Mamba model with global receptive field and linear complexity. This work marks the arrival of the visual Mamba model Swin moment.

The Swin moment of the visual Mamba model, the Chinese Academy of Sciences, Huawei and others launched VMamba


  • ##Paper title: VMamba: Visual State Space Model
  • Paper address: https://arxiv.org/abs/2401.10166
  • Code address: https://github.com/MzeroMiko/VMamba

CNN and Visual Transformer (ViT) are currently the two most mainstream basic visual models. Although CNN has linear complexity, ViT has more powerful data fitting capabilities, but at the cost of higher computational complexity. Researchers believe that ViT has strong fitting ability because it has a global receptive field and dynamic weights. Inspired by the Mamba model, researchers designed a model that has both excellent properties under linear complexity, namely the Visual State Space Model (VMamba). Extensive experiments have proven that VMamba performs well in various visual tasks. As shown in the figure below, VMamba-S achieves 83.5% accuracy on ImageNet-1K, which is 3.2% higher than Vim-S and 0.5% higher than Swin-S.

The Swin moment of the visual Mamba model, the Chinese Academy of Sciences, Huawei and others launched VMamba

Method introduction

The Swin moment of the visual Mamba model, the Chinese Academy of Sciences, Huawei and others launched VMamba

The success of VMamba The key lies in the use of the S6 model, which was originally designed to solve natural language processing (NLP) tasks. Unlike ViT's attention mechanism, the S6 model effectively reduces quadratic complexity to linearity by interacting each element in the 1D vector with previous scan information. This interaction makes VMamba more efficient when processing large-scale data. Therefore, the introduction of the S6 model laid a solid foundation for VMamba's success.

However, since visual signals (such as images) do not have a natural orderliness like text sequences, the data scanning method in S6 cannot simply be directly performed on visual signals. application. For this purpose, researchers designed a Cross-Scan scanning mechanism. Cross-Scan module (CSM) adopts a four-way scanning strategy, that is, scanning from the four corners of the feature map simultaneously (see the figure above). This strategy ensures that each element in the feature integrates information from all other locations in different directions, thus forming a global receptive field without increasing linear computational complexity.

The Swin moment of the visual Mamba model, the Chinese Academy of Sciences, Huawei and others launched VMamba

Based on CSM, the author designed the 2D-selective-scan (SS2D) module. As shown in the figure above, SS2D consists of three steps:

  • #scan expand Flatten a 2D feature in 4 different directions (upper left, lower right, lower left, upper right) is a 1D vector.
  • The S6 block independently sends the four 1D vectors obtained in the previous step to the S6 operation.
  • scan merge fuses the four 1D vectors obtained into a 2D feature output.

The Swin moment of the visual Mamba model, the Chinese Academy of Sciences, Huawei and others launched VMamba

The above picture is the VMamba structure diagram proposed in this article. The overall framework of VMamba is similar to the mainstream visual model. The main difference lies in the operators used in the basic module (VSS block). VSS block uses the 2D-selective-scan operation introduced above, namely SS2D. SS2D ensures that VMamba achieves the global receptive field at the linear complexity cost.

Experimental results

ImageNet classification

The Swin moment of the visual Mamba model, the Chinese Academy of Sciences, Huawei and others launched VMamba

##passed Comparing the experimental results, it is not difficult to see that under similar parameter amounts and FLOPs:

  • VMamba-T achieved a performance of 82.2%, exceeding RegNetY- 4G reached 2.2%, DeiT-S reached 2.4%, and Swin-T reached 0.9%.
  • VMamba-S achieved a performance of 83.5%, exceeding RegNetY-8G by 1.8% and Swin-S by 0.5%.
  • VMamba-B achieved a performance of 83.2% (there is a bug, the correct result will be updated on the Github page as soon as possible), which is 0.3% higher than RegNetY.

These results are much higher than the Vision Mamba (Vim) model, fully validating the potential of VMamba.

COCO target detection

The Swin moment of the visual Mamba model, the Chinese Academy of Sciences, Huawei and others launched VMamba

On the COOCO data set, VMamba also Maintaining excellent performance: In the case of fine-tune 12 epochs, VMamba-T/S/B reached 46.5%/48.2%/48.5% mAP respectively, exceeding Swin-T/S/B by 3.8%/3.6%/1.6 % mAP, exceeding ConvNeXt-T/S/B by 2.3%/2.8%/1.5% mAP. These results verify that VMamba fully works in downstream visual experiments, demonstrating its potential to replace mainstream basic visual models.

ADE20K Semantic Segmentation

The Swin moment of the visual Mamba model, the Chinese Academy of Sciences, Huawei and others launched VMamba

On ADE20K, VMamba also shows Excellent performance. The VMamba-T model achieves 47.3% mIoU at 512 × 512 resolution, a score that surpasses all competitors, including ResNet, DeiT, Swin, and ConvNeXt. This advantage can still be maintained under the VMamba-S/B model.

Analysis Experiment

Effective Receptive Field

The Swin moment of the visual Mamba model, the Chinese Academy of Sciences, Huawei and others launched VMamba

VMamba has a global effective receptive field, and only DeiT among other models has this feature. However, it is worth noting that the cost of DeiT is quadratic complexity, while VMamaba is linear complexity.

Input scale scaling

The Swin moment of the visual Mamba model, the Chinese Academy of Sciences, Huawei and others launched VMamba

  • Above picture (a) It is shown that VMamba exhibits the most stable performance (without fine-tuning) under different input image sizes. Interestingly, as the input size increases from 224 × 224 to 384 × 384, only VMamba shows a significant increase in performance (VMamba-S from 83.5% to 84.0%), highlighting its robustness to input image size changes sex.
  • The above figure (b) shows that the complexity of the VMamba series models increases linearly as the input becomes larger, which is consistent with the CNN model.

Finally, let us look forward to more Mamba-based vision models being proposed, alongside CNNs and ViTs, to provide a third option for basic vision models.

The above is the detailed content of The Swin moment of the visual Mamba model, the Chinese Academy of Sciences, Huawei and others launched VMamba. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
从VAE到扩散模型:一文解读以文生图新范式从VAE到扩散模型:一文解读以文生图新范式Apr 08, 2023 pm 08:41 PM

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了Apr 08, 2023 pm 06:21 PM

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

普林斯顿陈丹琦:如何让「大模型」变小普林斯顿陈丹琦:如何让「大模型」变小Apr 08, 2023 pm 04:01 PM

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

解锁CNN和Transformer正确结合方法,字节跳动提出有效的下一代视觉Transformer解锁CNN和Transformer正确结合方法,字节跳动提出有效的下一代视觉TransformerApr 09, 2023 pm 02:01 PM

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

Stable Diffusion XL 现已推出—有什么新功能,你知道吗?Stable Diffusion XL 现已推出—有什么新功能,你知道吗?Apr 07, 2023 pm 11:21 PM

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

五年后AI所需算力超100万倍!十二家机构联合发表88页长文:「智能计算」是解药五年后AI所需算力超100万倍!十二家机构联合发表88页长文:「智能计算」是解药Apr 09, 2023 pm 07:01 PM

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:​https://spj.scien

​什么是Transformer机器学习模型?​什么是Transformer机器学习模型?Apr 08, 2023 pm 06:31 PM

译者 | 李睿审校 | 孙淑娟​近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

AI模型告诉你,为啥巴西最可能在今年夺冠!曾精准预测前两届冠军AI模型告诉你,为啥巴西最可能在今年夺冠!曾精准预测前两届冠军Apr 09, 2023 pm 01:51 PM

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),