search
HomeBackend DevelopmentPython TutorialIntroduction to dashboard: a powerful tool for real-time monitoring and data visualization

Introduction to dashboard: a powerful tool for real-time monitoring and data visualization

Dashboard Introduction: A powerful tool for real-time monitoring and data visualization, specific code examples are required

Dashboard is a common data visualization tool that allows people to quickly Browse multiple indicators. Dashboard can monitor the running status of anything in real time and provide accurate information and reports. Whether you're managing a business, tracking data for a project, tracking market trends, or processing machine learning data output, Dashboard can always be used to its advantage.

The main purpose of Dashboard is to provide simple visualization tools that allow us to view and monitor data in real time across different projects. It optimizes the way data is presented, making it more attractive and easy to understand. Dashboards help us better understand data and help us make accurate decisions. In this article, we'll explore some basic concepts of Dashboard and some concrete code examples.

Basic concepts

Before we start writing Dashboard, we need to understand some basic concepts of Dashboard. Here is an explanation of some basic concepts:

  1. Metrics: Metrics in the Dashboard are data items that are to be monitored and measured. For example, the number of visits to a website can be an indicator.
  2. Dimension: Dimension is the classification between indicators. For example, in a sales report, date, region, channel, etc. can be dimensions.
  3. Chart type: In Dashboard, we can use different chart types to display data, such as bar charts, line charts, pie charts, etc.
  4. Data source: The data source in Dashboard is usually a database, but it can also be data obtained from an API or web service.

Code Example

Here we will use Python and the Bokeh library to create a Dashboard. Bokeh is a Python library for making interactive web visualizations that can be integrated with most popular Python libraries such as Pandas, NumPy, SciPy, etc.

We will use weather data to create the Dashboard. Let’s start by importing the required libraries:

import pandas as pd
from bokeh.layouts import column
from bokeh.models import ColumnDataSource, RangeTool, HoverTool
from bokeh.plotting import figure, show

Additionally, we need to import the weather dataset.

weather_data = pd.read_csv('https://assets.fundsindia.com/articles/wp-content/uploads/2019/07/2018_weather.csv')

Using the pandas library, we can read the CSV file and convert it into a DataFrame object as shown below:

weather_data = pd.read_csv('https://assets.fundsindia.com/articles/wp-content/uploads/2019/07/2018_weather.csv')
weather_data['Date'] = pd.to_datetime(weather_data['Date'], format='%Y-%m-%d')
weather_data = weather_data.set_index('Date')

We will use the Bokeh library to create two charts: one about A line chart for temperature, and another for humidity.

# 创建一个包含温度数据的数据源
temp_data = ColumnDataSource(weather_data[['Temperature']])
# 创建一个包含湿度数据的数据源
humidity_data = ColumnDataSource(weather_data[['Humidity']])

# 创建一个绘图工具,并添加温度数据
temp_fig = figure(sizing_mode='scale_width', plot_height=300, x_axis_type='datetime')
temp_fig.line('Date', 'Temperature', source=temp_data)

# 创建一个绘图工具,并添加湿度数据
humidity_fig = figure(sizing_mode='scale_width', plot_height=300, x_axis_type='datetime')
humidity_fig.line('Date', 'Humidity', source=humidity_data)

At the same time, we can also add a draggable date range tool and hover tool.

data_range_tool = RangeTool(x_range=temp_fig.x_range)
data_range_tool.overlay.fill_color = 'blue'
data_range_tool.overlay.fill_alpha = 0.2
temp_fig.add_tools(data_range_tool)
temp_fig.toolbar.active_multi = data_range_tool

hover_tool = HoverTool(mode='vline', tooltips=[('Temperature', '@Temperature'),('Humidity', '@Humidity')])
temp_fig.add_tools(hover_tool)
humidity_fig.add_tools(hover_tool)

Finally, we combine the two charts and use Bokeh’s layout tools to create the Dashboard.

dashboard = column(temp_fig, humidity_fig)
show(dashboard)

This is our complete 10 lines of Dashboard code.

Summary

Dashboard is an important tool that can help us better understand data and help us make accurate decisions. In this article, we introduced some basic Dashboard concepts and showed how to create a simple Dashboard using Python and the Bokeh library. Hope this helps!

The above is the detailed content of Introduction to dashboard: a powerful tool for real-time monitoring and data visualization. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python 获取旅游景点信息及评论并作词云、数据可视化Python 获取旅游景点信息及评论并作词云、数据可视化Apr 11, 2023 pm 08:49 PM

大家好,我是啃书君!正所谓:有朋自远方来,不亦乐乎?有朋友来找我们玩,是一件很快乐的事情,那么我们要尽地主之谊,好好带朋友去玩耍!那么问题来了,什么时候去哪里玩最好呢,哪里玩的地方最多呢?今天将手把手教你使用线程池爬取同程旅行的景点信息及评论数据并做词云、数据可视化!!!带你了解各个城市的游玩景点信息。在开始爬取数据之前,我们首先来了解一下线程。线程进程:进程是代码在数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位。线程:是轻量级的进程,是程序执行的最小单元,是进程的一个执行路径。一

酷炫,Python实现交通数据可视化!酷炫,Python实现交通数据可视化!Apr 11, 2023 pm 07:52 PM

1、TransBigData简介TransBigData为处理常见的交通时空大数据(如出租车GPS数据、共享单车数据和公交车GPS数据等)提供了快速而简洁的方法。TransBigData为交通时空大数据分析的各个阶段提供了多种处理方法,代码简洁、高效、灵活、易用,可以用简洁的代码实现复杂的数据任务。目前,TransBigData主要提供以下方法: 数据预处理:对数据集提供快速计算数据量、时间段、采样间隔等基本信息的方法,也针对多种数据噪声提供了相应的清洗方法。 数据栅格化:提供在研究区域内生成、

使用PHP和Chart.js创建多图表数据可视化应用程序使用PHP和Chart.js创建多图表数据可视化应用程序May 11, 2023 am 09:27 AM

随着互联网的不断发展,大量的数据被生成并存储在各种网络应用程序和系统中,尤其是像电子商务、社交网络、金融和制造业等领域。为了从这些数据中汲取更多的信息,数据可视化已成为一种流行的方法。通过将数据转换为图形形式,用户可以更加容易地理解和分析数据。在本文中,我们将介绍如何使用PHP和Chart.js来创建多图表数据可视化应用程序。什么是Chart.js?Char

如何使用 Go 语言进行数据可视化分析?如何使用 Go 语言进行数据可视化分析?Jun 10, 2023 am 10:46 AM

随着大数据时代的到来,数据可视化分析在各行各业中扮演着至关重要的角色。而Go语言作为一种快速、高效、安全的编程语言,也逐渐在数据可视化分析领域占据一席之地。本文将探讨如何使用Go语言进行数据可视化分析。一、Go语言常用的数据可视化库Plotly:可用于在浏览器中创建交互式的图形,支持多种图形类型,如线图、条形图、散点图、热力图等。Gonum/plo

聊聊vue3中怎么使用高德地图api聊聊vue3中怎么使用高德地图apiMar 09, 2023 pm 07:22 PM

在我们使用高德地图的时候,官方给我们推荐了很多案例,demo,但是这些案例都是使用原生方法接入,并没有提供vue或者react 的demo,vue2的 接入网上也很多人都有写过,下面本篇文章就来看看 vue3怎么使用常用的高德地图api,希望对大家有所帮助!

基于Java的数据可视化工具和应用介绍基于Java的数据可视化工具和应用介绍Jun 18, 2023 am 09:16 AM

近年来,随着数据的爆炸性增长和互联网技术的不断发展,数据可视化成为越来越受关注的领域。数据可视化是将数据转化为易于理解和分析的图形化形式,帮助人们更快速和准确地理解数据。而基于Java的数据可视化工具和应用则成为了当前比较热门的技术。Java的数据可视化工具和应用优势应用范围广Java语言有很强的跨平台性,可以在不同操作系统上安装和运行,而且可以通过Java

Vue 中实现柱状图、饼图等数据可视化技巧Vue 中实现柱状图、饼图等数据可视化技巧Jun 25, 2023 pm 12:43 PM

近年来,数据可视化相关技术的快速发展,使得复杂数据更易于被理解和分析。Vue作为一种流行的前端框架,具有良好的可扩展性和易用性,被广泛应用于数据可视化领域。本文将介绍Vue中实现柱状图、饼图等数据可视化的技巧。一、使用ECharts实现柱状图ECharts是一款基于JavaScript的开源可视化库,提供了多种图表类型,其中包括柱状图。下面以

在PHP中使用D3.js创建漂亮的数据可视化在PHP中使用D3.js创建漂亮的数据可视化Jun 19, 2023 pm 02:42 PM

随着互联网时代的到来,数据已经成为了我们生活和工作中必不可少的一部分。在处理和分析数据的过程中,数据可视化已经成为了一种非常流行的技术。数据可视化可以让我们更好地理解数据,发现数据中的规律和趋势,同时更好地向别人展示数据分析结果。在本文中,我们将会介绍如何在PHP中使用D3.js创建漂亮的数据可视化。一、什么是D3.jsD3.js(Data-DrivenD

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.