Updated Point Transformer: more efficient, faster and more powerful!
Original title: Point Transformer V3: Simpler, Faster, Stronger
Paper link: https://arxiv.org/pdf/2312.10035.pdf
Code link: https:// github.com/Pointcept/PointTransformerV3
Author affiliation: HKU SH AI Lab MPI PKU MIT
Thesis idea:
This article is not intended to focus on the attention mechanism Seek innovation within. Instead, it focuses on leveraging the power of scale to overcome existing trade-offs between accuracy and efficiency in the context of point cloud processing. Drawing inspiration from recent advances in 3D large-scale representation learning, this paper recognizes that model performance is affected more by scale than by complexity of design. Therefore, this paper proposes Point Transformer V3 (PTv3), which prioritizes simplicity and efficiency over the accuracy of certain mechanisms that have less impact on the overall performance after scaling, such as point clouds organized in specific patterns. Efficient serialized neighborhood mapping to replace KNN's exact neighborhood search. This principle enables significant scaling, extending the receptive field from 16 to 1024 points, while remaining efficient (3x faster processing and 10x more memory efficient compared to its predecessor PTv2). PTv3 achieves state-of-the-art results on more than 20 downstream tasks covering indoor and outdoor scenarios. PTv3 takes these results to the next level with further enhancements through multi-dataset joint training.
Network Design:
Recent advances in 3D representation learning [85] overcome the limitations in point cloud processing by introducing collaborative training methods across multiple 3D datasets. Progress has been made on data size limits. Combined with this strategy, an efficient convolutional backbone [12] effectively bridges the accuracy gap typically associated with point cloud transformers [38, 84]. However, point cloud transformers themselves have not yet fully benefited from this scale advantage due to the efficiency gap of point cloud transformers compared to sparse convolutions. This discovery shaped the original motivation for this work: to re-weigh the design choices of point transformers from the perspective of the scaling principle. This paper believes that model performance is more significantly affected by scale than by complex design.
Therefore, this article introduces Point Transformer V3 (PTv3), which prioritizes simplicity and efficiency over the accuracy of certain mechanisms to achieve scalability. Such adjustments have negligible impact on the overall performance after scaling. Specifically, PTv3 makes the following adjustments to achieve superior efficiency and scalability:
- Inspired by two recent advances [48, 77] and recognizing the advantages of structured unstructured point clouds Scalability advantage, PTv3 changes the traditional spatial proximity defined by K-Nearest Neighbors (KNN) query, accounting for 28% of the forward time. Instead, it explores the potential of serialized neighborhoods in point clouds organized according to specific patterns.
- PTv3 adopts a simplified approach tailored for serialized point clouds, replacing more complex attention patch interaction mechanisms such as shift-window (which hinders the fusion of attention operators) and neighborhood mechanisms ( resulting in high memory consumption).
- PTv3 eliminates the dependence on relative position encoding, which accounts for 26% of forward time, in favor of simpler front-end sparse convolutional layers.
This article considers these designs to be intuitive choices driven by scaling principles and advances in existing point cloud transformers. Importantly, this article highlights the critical importance of understanding how scalability affects backbone design, rather than detailed module design.
This principle significantly enhances scalability, overcoming the traditional trade-off between accuracy and efficiency (see Figure 1). PTv3 offers 3.3x faster inference and 10.2x lower memory usage than its predecessor. More importantly, PTv3 leverages its inherent ability to scale sensing range, extending its receptive field from 16 to 1024 points while maintaining efficiency. This scalability underpins its superior performance in real-world perception tasks, with PTv3 achieving state-of-the-art results on more than 20 downstream tasks in indoor and outdoor scenarios. PTv3 further improves these results by further increasing its data size through multi-dataset training [85]. It is hoped that the insights of this article will inspire future research in this direction.
Figure 1. Point Transformer V3 (PTv3) overview. Compared with its predecessor PTv2 [84], PTv3 in this paper shows superiority in the following aspects: 1. Stronger performance. PTv3 achieves state-of-the-art results on a variety of indoor and outdoor 3D perception tasks. 2. Wider receptive field. Benefiting from simplicity and efficiency, PTv3 expands the receptive field from 16 to 1024 points. 3. Faster. PTv3 significantly increases processing speed, making it suitable for latency-sensitive applications. 4. Reduce memory consumption. PTv3 reduces memory usage and enhances accessibility in a wider range of situations.
Figure 2. Delay tree diagram of each component of PTv2. This article benchmarks and visualizes the forward time ratio of each component of PTv2. KNN Query and RPE take up 54% of the forward time in total.
Figure 3. Point cloud serialization. This article demonstrates four serialization patterns through triplet visualization. For each triplet, the space-filling curve for serialization (left), the point cloud serialization variable sorting order within the space-filling curve (middle), and the grouped patches of the serialized point cloud for local attention are shown (right). The transformation of the four serialization modes allows the attention mechanism to capture various spatial relationships and contexts, thereby improving model accuracy and generalization ability.
Figure 4. Patch grouping. (a) Reordering of point clouds according to an order derived from a specific serialization schema. (b) Fill the point cloud sequence by borrowing points from adjacent patches to ensure that it is divisible by the specified patch size.
Figure 5. Patch interaction. (a) Standard patch grouping, with a regular, non-shifted arrangement; (b) Translational expansion, in which points are aggregated at regular intervals to produce an expansion effect; (c) Shift Patch, which uses a shifting mechanism similar to the shift window method ; (d) Shift Order, in which different serialization patterns are cyclically assigned to successive attention layers; (d) Shuffle Order, in which the sequence of serialization patterns is randomized before being input to the attention layer.
Figure 6. Overall architecture.
Experimental results:
##Summary:
This article introduces Point Transformer V3, which works towards overcoming The traditional trade-off between accuracy and efficiency in point cloud processing takes a big step forward. Guided by a novel interpretation of the scaling principle in backbone design, this paper argues that model performance is more profoundly affected by scale than by complexity of design. By prioritizing efficiency over the accuracy of smaller impact mechanisms, this paper leverages the power of scale, thereby improving performance. In short, this article can make a model more powerful by making it simpler and faster.Citation:
Wu, X., Jiang, L., Wang, P., Liu, Z., Liu, X., Qiao, Y., Ouyang, W., He, T., & Zhao, H. (2023). Point Transformer V3: Simpler, Faster, Stronger.ArXiv. /abs/2312.10035
The above is the detailed content of Updated Point Transformer: more efficient, faster and more powerful!. For more information, please follow other related articles on the PHP Chinese website!

The legal tech revolution is gaining momentum, pushing legal professionals to actively embrace AI solutions. Passive resistance is no longer a viable option for those aiming to stay competitive. Why is Technology Adoption Crucial? Legal professional

Many assume interactions with AI are anonymous, a stark contrast to human communication. However, AI actively profiles users during every chat. Every prompt, every word, is analyzed and categorized. Let's explore this critical aspect of the AI revo

A successful artificial intelligence strategy cannot be separated from strong corporate culture support. As Peter Drucker said, business operations depend on people, and so does the success of artificial intelligence. For organizations that actively embrace artificial intelligence, building a corporate culture that adapts to AI is crucial, and it even determines the success or failure of AI strategies. West Monroe recently released a practical guide to building a thriving AI-friendly corporate culture, and here are some key points: 1. Clarify the success model of AI: First of all, we must have a clear vision of how AI can empower business. An ideal AI operation culture can achieve a natural integration of work processes between humans and AI systems. AI is good at certain tasks, while humans are good at creativity and judgment

Meta upgrades AI assistant application, and the era of wearable AI is coming! The app, designed to compete with ChatGPT, offers standard AI features such as text, voice interaction, image generation and web search, but has now added geolocation capabilities for the first time. This means that Meta AI knows where you are and what you are viewing when answering your question. It uses your interests, location, profile and activity information to provide the latest situational information that was not possible before. The app also supports real-time translation, which completely changed the AI experience on Ray-Ban glasses and greatly improved its usefulness. The imposition of tariffs on foreign films is a naked exercise of power over the media and culture. If implemented, this will accelerate toward AI and virtual production

Artificial intelligence is revolutionizing the field of cybercrime, which forces us to learn new defensive skills. Cyber criminals are increasingly using powerful artificial intelligence technologies such as deep forgery and intelligent cyberattacks to fraud and destruction at an unprecedented scale. It is reported that 87% of global businesses have been targeted for AI cybercrime over the past year. So, how can we avoid becoming victims of this wave of smart crimes? Let’s explore how to identify risks and take protective measures at the individual and organizational level. How cybercriminals use artificial intelligence As technology advances, criminals are constantly looking for new ways to attack individuals, businesses and governments. The widespread use of artificial intelligence may be the latest aspect, but its potential harm is unprecedented. In particular, artificial intelligence

The intricate relationship between artificial intelligence (AI) and human intelligence (NI) is best understood as a feedback loop. Humans create AI, training it on data generated by human activity to enhance or replicate human capabilities. This AI

Anthropic's recent statement, highlighting the lack of understanding surrounding cutting-edge AI models, has sparked a heated debate among experts. Is this opacity a genuine technological crisis, or simply a temporary hurdle on the path to more soph

India is a diverse country with a rich tapestry of languages, making seamless communication across regions a persistent challenge. However, Sarvam’s Bulbul-V2 is helping to bridge this gap with its advanced text-to-speech (TTS) t


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 English version
Recommended: Win version, supports code prompts!
