Home >Computer Tutorials >Computer Knowledge >Kriging three-dimensional interpolation using MATLAB
theta = [10 10]; lob = [1e-1 1e-1]; upb = [20 20];
[dmodel, perf] = dacefit([lat,lon], tem, @regpoly0, @corrgauss, theta, lob, upb);
LonLat = gridsamp([min(latlim) min(lonlim);max(latlim) max(lonlim)], 60);
TemNew = predictor(LonLat, dmodel);
LatNew = reshape(LonLat(:,1),[60,60]);
LonNew = reshape(LonLat(:,2),[60,60]);
TemNew = reshape(TemNew, size(LonNew));
geoshow(LatNew,LonNew,TemNew,'DisplayType','surface');
hold on
plotm(lat,lon,'k.');
colorbar;
In matlab, epochs is the number of times the neuron weights and thresholds are adjusted based on the output error return during calculation.
Authentication method:
(1) Using network linearlayer
1,cell input form
Input P={[1;2] [2;1] [2;3] [3;1]};
Target value T={4 5 7 7}
Use adapt;
input the command:
P={[1;2] [2;1] [2;3] [3;1]};
T={4 5 7 7};
net=linearlayer(0,0.1);
net=configure(net,P,T);
net.IW{1,1}=[0,0];
net.b{1}=0;
[net,a,e]=adapt(net,P,T);
The weight is updated 4 times, the final value is:
net.IW{1,1}= 1.5600 1.5200
net.b{1}=0.9200
Simulation results: [0] [2] [6.0000] [5.8000]
2, matrix input form
Input P=[1 2 2 3;2 1 3 1];
Output T=[4 5 7 7]
Use adapt;
input the command:
P=[1 2 2 3;2 1 3 1];
T=[4 5 7 7];
net=linearlayer(0,0.01);
net=configure(net,P,T);
net.IW{1,1}=[0,0];
net.b{1}=0;
[net,a,e]=adapt(net,P,T);
The weight is updated once, and the final value is:
net.IW{1,1}=0.4900 0.4100
net.b{1}= 0.2300
3, matrix input form
Input P=[1 2 2 3;2 1 3 1];
Output T=[4 5 7 7]
Use train; (set epochs=1)
Prerequisite: Add explicit calling commands to the learning function and training function;
P=[1 2 2 3;2 1 3 1];
T=[4 5 7 7];
net=linearlayer(0,0.01);
net=configure(net,P,T);
net.IW{1,1}=[0,0];
net.b{1}=0;
net=trian(net,P,T);
The weight is updated once, and the final value is:
net.IW{1,1}=0.4900 0.4100
net.b{1}= 0.2300
Conclusion: For static networks, the cell input of linearlayer and adapt is online learning, while the matrix input is offline learning, which is equivalent to one round of train.
As for the dynamic network: do it when you have time.
The above is the detailed content of Kriging three-dimensional interpolation using MATLAB. For more information, please follow other related articles on the PHP Chinese website!