How to convert list to numpy: 1. Use numpy.array() function. The first parameter of this function is a list object, which can be a one-dimensional or multi-dimensional list; 2. Use numpy.asarray() function, this function will try to use the data type of the input list; 3. Use the numpy.reshape() function to convert a one-dimensional list into a multi-dimensional NumPy array; 4. Use the numpy.fromiter() function, the function's One parameter is an iterable object.
Operating system for this tutorial: Windows 10 system, Python version 3.11.4, Dell G3 computer.
In Python, we often use lists and NumPy arrays to store and process data. A list is an ordered, mutable container that can store any type of data. A NumPy array is a multidimensional numeric array object used for storing and processing large data sets.
Converting a list to a NumPy array can bring many benefits, such as:
NumPy arrays operate faster: NumPy is written in C language at the bottom and can handle large amounts of data efficiently than Python. Lists are faster.
NumPy array operations are more concise: NumPy provides many convenient functions and methods to process arrays, making the code more concise and readable.
NumPy arrays are more powerful: NumPy provides a large number of mathematical functions and statistical functions, which can facilitate data analysis and scientific calculations.
The following are several ways to convert a list into a NumPy array:
1. Use the numpy.array() function: The numpy.array() function can convert a list into a NumPy array. The first parameter of this function is a list object, which can be a one-dimensional or multi-dimensional list. For example:
import numpy as np my_list = [1, 2, 3, 4, 5] my_array = np.array(my_list) print(my_array)
Output result:
[1 2 3 4 5]
2. Use the numpy.asarray() function: The numpy.asarray() function can convert the list into a NumPy array. Unlike the numpy.array() function, the numpy.asarray() function will try to use the data type of the input list. For example:
import numpy as np my_list = [1, 2, 3, 4, 5] my_array = np.asarray(my_list) print(my_array)
Output result:
[1 2 3 4 5]
3. Use the numpy.reshape() function: The numpy.reshape() function can change the dimensions of the array and convert a one-dimensional list into a multi-dimensional one. NumPy array. For example:
import numpy as np my_list = [1, 2, 3, 4, 5] my_array = np.reshape(my_list, (5, 1)) print(my_array)
Output result:
[[1] [2] [3] [4] [5]]
4. Use the numpy.fromiter() function: The numpy.fromiter() function can create a NumPy array from an iterable object. The first parameter of this function is an iterable object, such as a list, tuple, etc. For example:
import numpy as np my_list = [1, 2, 3, 4, 5] my_array = np.fromiter(my_list, dtype=int) print(my_array)
Output result:
[1 2 3 4 5]
Summary: The above are several ways to convert a list into a NumPy array. According to actual needs, choosing an appropriate method for conversion can improve the efficiency and readability of the code. The functionality and performance of NumPy arrays make it one of the important tools for data processing and scientific computing.
The above is the detailed content of How to convert list to numpy. For more information, please follow other related articles on the PHP Chinese website!

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver Mac version
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool