Web翻页优化实例
作者:Wanghai
环境:
Linux version 2.4.20-8custom (root@web2) (gcc version 3.2.2 20030222 (Red Hat Linux 3.2.2-5)) #3 SMP Thu Jun 5 22:03:36 CST 2003
Mem: 2113466368
Swap: 4194881536
CPU:两个超线程的Intel(R) Xeon(TM) CPU 2.40GHz
优化前语句在mysql里面查询15秒左右出来,转移到oracle后进行在不调整索引和语句的情况下执行时间大概是4-5秒,调整后执行时间小于0.5秒。
翻页语句:
SELECT * FROM (SELECT T1.*, rownum as linenum FROM (
SELECT /*+ index(a ind_old)*/
a.category FROM auction_auctions a WHERE a.category =' 170101 ' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends) T1 WHERE rownum < 18681) WHERE linenum >= 18641
被查询的表:auction_auctions(产品表)
表结构:
SQL> desc auction_auctions;
Name Null? Type
----------------------------------------- -------- ----------------------------
ID NOT NULL VARCHAR2(32)
USERNAME VARCHAR2(32)
TITLE CLOB
GMT_MODIFIED NOT NULL DATE
STARTS NOT NULL DATE
DESCRIPTION CLOB
PICT_URL CLOB
CATEGORY NOT NULL VARCHAR2(11)
MINIMUM_BID NUMBER
RESERVE_PRICE NUMBER
BUY_NOW NUMBER
AUCTION_TYPE CHAR(1)
DURATION VARCHAR2(7)
INCREMENTNUM NOT NULL NUMBER
CITY VARCHAR2(30)
PROV VARCHAR2(20)
LOCATION VARCHAR2(40)
LOCATION_ZIP VARCHAR2(6)
SHIPPING CHAR(1)
PAYMENT CLOB
INTERNATIONAL CHAR(1)
ENDS NOT NULL DATE
CURRENT_BID NUMBER
CLOSED CHAR(2)
PHOTO_UPLOADED CHAR(1)
QUANTITY NUMBER(11)
STORY CLOB
HAVE_INVOICE NOT NULL NUMBER(1)
HAVE_GUARANTEE NOT NULL NUMBER(1)
STUFF_STATUS NOT NULL NUMBER(1)
APPROVE_STATUS NOT NULL NUMBER(1)
OLD_STARTS NOT NULL DATE
ZOO VARCHAR2(10)
PROMOTED_STATUS NOT NULL NUMBER(1)
REPOST_TYPE CHAR(1)
REPOST_TIMES NOT NULL NUMBER(4)
SECURE_TRADE_AGREE NOT NULL NUMBER(1)
SECURE_TRADE_TRANSACTION_FEE VARCHAR2(16)
SECURE_TRADE_ORDINARY_POST_FEE NUMBER
SECURE_TRADE_FAST_POST_FEE NUMBER
表记录数及大小
SQL> select count(*) from auction_auctions;
COUNT(*)
----------
537351
SQL> select segment_name,bytes,blocks from user_segments where segment_name ='AUCTION_AUCTIONS';
SEGMENT_NAME BYTES BLOCKS
AUCTION_AUCTIONS 1059061760 129280
表上原有的索引
create index ind_old on auction_auctions(closed,approve_status,category,ends) tablespace tbsindex compress 2;
SQL> select segment_name,bytes,blocks from user_segments where segment_name = 'IND_OLD';
SEGMENT_NAME BYTES BLOCKS
IND_OLD 20971520 2560
表和索引都已经分析过,我们来看一下sql执行的费用
SQL> set autotrace trace;
SQL> SELECT * FROM (SELECT T1.*, rownum as linenum FROM (SELECT a.* FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends) T1 WHERE rownum <18681) WHERE linenum >= 18641;
40 rows selected.
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=19152 Card=18347 Byt
es=190698718)
1 0 VIEW (Cost=19152 Card=18347 Bytes=190698718)
2 1 COUNT (STOPKEY)
3 2 VIEW (Cost=19152 Card=18347 Bytes=190460207)
4 3 TABLE ACCESS (BY INDEX ROWID) OF 'AUCTION_AUCTIONS'
(Cost=19152 Card=18347 Bytes=20860539)
5 4 INDEX (RANGE SCAN) OF 'IND_OLD' (NON-UNIQUE) (Cost
=810 Card=186003)
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
19437 consistent gets
18262 physical reads
0 redo size
114300 bytes sent via SQL*Net to client
56356 bytes received via SQL*Net from client
435 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
40 rows processed
我们可以看到这条sql语句通过索引范围扫描找到最里面的结果集,然后通过两个view操作最后得出数据。其中18502 consistent gets,17901 physical reads
我们来看一下这个索引建的到底合不合理,先看下各个查寻列的distinct值
select count(distinct ends) from auction_auctions;
COUNT(DISTINCTENDS)
-------------------
338965
SQL> select count(distinct category) from auction_auctions;
COUNT(DISTINCTCATEGORY)
-----------------------
1148
SQL> select count(distinct closed) from auction_auctions;
COUNT(DISTINCTCLOSED)
---------------------
2
SQL> select count(distinct approve_status) from auction_auctions;
COUNT(DISTINCTAPPROVE_STATUS)
-----------------------------
5
页索引里列平均存储长度
SQL> select avg(vsize(ends)) from auction_auctions;
AVG(VSIZE(ENDS))
----------------
7
SQL> select avg(vsize(closed)) from auction_auctions;
AVG(VSIZE(CLOSED))
------------------
2
SQL> select avg(vsize(category)) from auction_auctions;
AVG(VSIZE(CATEGORY))
--------------------
5.52313106
SQL> select avg(vsize(approve_status)) from auction_auctions;
AVG(VSIZE(APPROVE_STATUS))
--------------------------
1.67639401
我们来估算一下各种组合索引的大小,可以看到closed,approve_status,category都是相对较低集势的列(重复值较多),下面我们来大概计算下各种页索引需要的空间
column distinct num column len
ends 338965 7
category 1148 5.5
closed 2 2
approve_status 5 1.7
index1: (ends,closed,category,approve_status) compress 2
ends:distinct number---338965
closed: distinct number---2
index size=338965*2*(9+2)+ 537351*(1.7+5.5+6)=14603998
index2: (closed,category,ends,approve_status)
closed: distinct number---2
category: distinct number---1148
index size=2*1148*(2+5.5)+537351*(7+1.7+6)=7916279
index3: (closed,approve_status,category,ends)
closed: distinct number---2
approve_status: distinct number―5
index size=2*5*(2+1.7)+537351*(7+5.5+6)=9941030
结果出来了,index2: (closed,category,ends,approve_status)的索引最小
我们再来看一下语句
SELECT * FROM (SELECT T1.*, rownum as linenum FROM (SELECT a.* FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends) T1 WHERE rownum <18681) WHERE linenum >= 18641;
可以看出这个sql语句有很大优化余地,首先最里面的结果集SELECT a.* FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends,这里的话会走index range scan,然后table scan by rowid,这样的话如果符合条件的数据多的话相当耗资源,我们可以改写成
SELECT a.rowid FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends
这样的话最里面的结果集只需要index fast full scan就可以完成了,再改写一下得出以下语句
select * from auction_auctions where rowid in (SELECT rid FROM (
SELECT T1.rowid rid, rownum as linenum FROM
(SELECT a.rowid FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND
(a.approve_status>=0) ORDER BY a.ends) T1 WHERE rownum < 18681) WHERE linenum >= 18641)
下面我们来测试一下这个索引的查询开销
select * from auction_auctions where rowid in (SELECT rid FROM (
SELECT T1.rowid rid, rownum as linenum FROM
(SELECT a.rowid FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND
(a.approve_status>=0) ORDER BY a.closed,a.ends) T1 WHERE rownum < 18681) WHERE linenum >= 18641)
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=18698 Card=18344 Byt
es=21224008)
1 0 NESTED LOOPS (Cost=18698 Card=18344 Bytes=21224008)
2 1 VIEW (Cost=264 Card=18344 Bytes=366880)
3 2 SORT (UNIQUE)
4 3 COUNT (STOPKEY)
5 4 VIEW (Cost=264 Card=18344 Bytes=128408)
6 5 SORT (ORDER BY STOPKEY) (Cost=264 Card=18344 Byt
es=440256)
7 6 INDEX (FAST FULL SCAN) OF 'IDX_AUCTION_BROWSE'
(NON-UNIQUE) (Cost=159 Card=18344 Bytes=440256)
8 1 TABLE ACCESS (BY USER ROWID) OF 'AUCTION_AUCTIONS' (Cost
=1 Card=1 Bytes=1137)
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
2080 consistent gets
1516 physical reads
0 redo size
114840 bytes sent via SQL*Net to client
56779 bytes received via SQL*Net from client
438 SQL*Net roundtrips to/from client
2 sorts (memory)
0 sorts (disk)
40 rows processed
可以看到consistent gets从19437降到2080,physical reads从18262降到1516,查询时间也丛4秒左右下降到0。5秒,可以来说这次sql调整取得了预期的效果。
又修改了一下语句,
SQL> select * from auction_auctions where rowid in
2 (SELECT rid FROM (
3 SELECT T1.rowid rid, rownum as linenum FROM
4 (SELECT a.rowid FROM auction_auctions a
5 WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND
a.approve_status>=0
6 7 ORDER BY a.closed,a.category,a.ends) T1
8 WHERE rownum < 18600) WHERE linenum >= 18560) ;
40 rows selected.
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=17912 Card=17604 Byt
es=20367828)
1 0 NESTED LOOPS (Cost=17912 Card=17604 Bytes=20367828)
2 1 VIEW (Cost=221 Card=17604 Bytes=352080)
3 2 SORT (UNIQUE)
4 3 COUNT (STOPKEY)
5 4 VIEW (Cost=221 Card=17604 Bytes=123228)
6 5 INDEX (RANGE SCAN) OF 'IDX_AUCTION_BROWSE' (NON-
UNIQUE) (Cost=221 Card=17604 Bytes=422496)
7 1 TABLE ACCESS (BY USER ROWID) OF 'AUCTION_AUCTIONS' (Cost
=1 Card=1 Bytes=1137)
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
550 consistent gets
14 physical reads
0 redo size
117106 bytes sent via SQL*Net to client
56497 bytes received via SQL*Net from client
436 SQL*Net roundtrips to/from client
1 sorts (memory)
0 sorts (disk)
40 rows processed
在order by里加上索引前导列,消除了
6 5 SORT (ORDER BY STOPKEY) (Cost=264 Card=18344 Byt
es=440256)
,把consistent gets从2080降到550

PHP is used to build dynamic websites, and its core functions include: 1. Generate dynamic content and generate web pages in real time by connecting with the database; 2. Process user interaction and form submissions, verify inputs and respond to operations; 3. Manage sessions and user authentication to provide a personalized experience; 4. Optimize performance and follow best practices to improve website efficiency and security.

PHP uses MySQLi and PDO extensions to interact in database operations and server-side logic processing, and processes server-side logic through functions such as session management. 1) Use MySQLi or PDO to connect to the database and execute SQL queries. 2) Handle HTTP requests and user status through session management and other functions. 3) Use transactions to ensure the atomicity of database operations. 4) Prevent SQL injection, use exception handling and closing connections for debugging. 5) Optimize performance through indexing and cache, write highly readable code and perform error handling.

Using preprocessing statements and PDO in PHP can effectively prevent SQL injection attacks. 1) Use PDO to connect to the database and set the error mode. 2) Create preprocessing statements through the prepare method and pass data using placeholders and execute methods. 3) Process query results and ensure the security and performance of the code.

PHP and Python have their own advantages and disadvantages, and the choice depends on project needs and personal preferences. 1.PHP is suitable for rapid development and maintenance of large-scale web applications. 2. Python dominates the field of data science and machine learning.

PHP is widely used in e-commerce, content management systems and API development. 1) E-commerce: used for shopping cart function and payment processing. 2) Content management system: used for dynamic content generation and user management. 3) API development: used for RESTful API development and API security. Through performance optimization and best practices, the efficiency and maintainability of PHP applications are improved.

PHP makes it easy to create interactive web content. 1) Dynamically generate content by embedding HTML and display it in real time based on user input or database data. 2) Process form submission and generate dynamic output to ensure that htmlspecialchars is used to prevent XSS. 3) Use MySQL to create a user registration system, and use password_hash and preprocessing statements to enhance security. Mastering these techniques will improve the efficiency of web development.

PHP and Python each have their own advantages, and choose according to project requirements. 1.PHP is suitable for web development, especially for rapid development and maintenance of websites. 2. Python is suitable for data science, machine learning and artificial intelligence, with concise syntax and suitable for beginners.

PHP is still dynamic and still occupies an important position in the field of modern programming. 1) PHP's simplicity and powerful community support make it widely used in web development; 2) Its flexibility and stability make it outstanding in handling web forms, database operations and file processing; 3) PHP is constantly evolving and optimizing, suitable for beginners and experienced developers.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 English version
Recommended: Win version, supports code prompts!

SublimeText3 Mac version
God-level code editing software (SublimeText3)