Reality recovery problem in image defogging technology
Reality recovery issues and specific code examples in image defogging technology
Abstract: With the continuous development of computer vision and image processing technology, image defogging technology Gradually becoming a popular research field. However, existing image dehazing algorithms still have some problems in restoring image details and realism. This article explores these issues and gives some concrete code examples.
- Introduction
Image dehazing technology refers to restoring and repairing haze images to restore the clarity and authenticity of the image. In real life, due to natural disasters, air pollution and other reasons, haze often exists in images, resulting in a decrease in image quality. Therefore, image defogging technology is of great significance for improving image quality. - Reality recovery problem
Even after using advanced image dehazing algorithms, the image may still have some problems, such as incomplete haze removal, insufficient clarity of details in the restored image, etc. These issues result in images that lack visual realism. In order to solve these problems, researchers have proposed some improved methods.
2.1 Integrating multiple defogging algorithms
Traditional image defogging algorithms are mainly based on a single model for defogging operations, which may lead to less than ideal results. By integrating multiple different defogging algorithms, the respective advantages can be combined to improve the effect of image detail recovery. The following is a simple sample code that demonstrates how to use Python to fuse two different dehazing algorithms:
import cv2 import numpy as np def defog_image(image): # 使用第一个去雾算法 defogged_image_1 = method_1(image) # 使用第二个去雾算法 defogged_image_2 = method_2(image) # 对两种算法的结果进行融合 fused_image = alpha * defogged_image_1 + (1 - alpha) * defogged_image_2 return fused_image # 测试代码 image = cv2.imread('foggy_image.jpg') defogged_image = defog_image(image) cv2.imshow('Defogged Image', defogged_image) cv2.waitKey(0) cv2.destroyAllWindows()
2.2 Combining deep learning technology
In recent years, deep learning technology has made great achievements in the field of image processing. made significant progress. Combining deep learning technology can better restore the authenticity of the image. For example, deep neural networks can be used to learn the clarity and realism characteristics of images to better remove haze. The following is a simple sample code that demonstrates how to use deep learning technology for image dehazing:
import cv2 import numpy as np import tensorflow as tf def defog_image(image): # 加载预训练的神经网络模型 model = tf.keras.models.load_model('defog_model.h5') # 对图像进行预处理 preprocessed_image = preprocess_image(image) # 使用模型进行去雾操作 defogged_image = model.predict(preprocessed_image) return defogged_image # 测试代码 image = cv2.imread('foggy_image.jpg') defogged_image = defog_image(image) cv2.imshow('Defogged Image', defogged_image) cv2.waitKey(0) cv2.destroyAllWindows()
- Conclusion
The development of image dehazing technology is of great significance for improving image quality, but it is still There are certain problems with realism recovery. This article discusses these issues and gives some specific code examples showing how to improve the realism of images by fusing multiple dehazing algorithms and combining deep learning techniques. I hope these code examples can provide some help and inspiration to readers in image dehazing research and applications.
References:
[1] Gasperini A, Cesana M, Rossi C, et al. Enhanced defogging algorithms for underwater imaging[J]. IEEE Transactions on Image Processing, 2018, 27( 3): 1252-1261.
[2] Ren W, Liu S, Zhang H, et al. Deep neural network based on-line defogging for outdoor videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7962-7971.
The above is the detailed content of Reality recovery problem in image defogging technology. For more information, please follow other related articles on the PHP Chinese website!

This article explores the growing concern of "AI agency decay"—the gradual decline in our ability to think and decide independently. This is especially crucial for business leaders navigating the increasingly automated world while retainin

Ever wondered how AI agents like Siri and Alexa work? These intelligent systems are becoming more important in our daily lives. This article introduces the ReAct pattern, a method that enhances AI agents by combining reasoning an

"I think AI tools are changing the learning opportunities for college students. We believe in developing students in core courses, but more and more people also want to get a perspective of computational and statistical thinking," said University of Chicago President Paul Alivisatos in an interview with Deloitte Nitin Mittal at the Davos Forum in January. He believes that people will have to become creators and co-creators of AI, which means that learning and other aspects need to adapt to some major changes. Digital intelligence and critical thinking Professor Alexa Joubin of George Washington University described artificial intelligence as a “heuristic tool” in the humanities and explores how it changes

LangChain is a powerful toolkit for building sophisticated AI applications. Its agent architecture is particularly noteworthy, allowing developers to create intelligent systems capable of independent reasoning, decision-making, and action. This expl

Radial Basis Function Neural Networks (RBFNNs): A Comprehensive Guide Radial Basis Function Neural Networks (RBFNNs) are a powerful type of neural network architecture that leverages radial basis functions for activation. Their unique structure make

Brain-computer interfaces (BCIs) directly link the brain to external devices, translating brain impulses into actions without physical movement. This technology utilizes implanted sensors to capture brain signals, converting them into digital comman

This "Leading with Data" episode features Ines Montani, co-founder and CEO of Explosion AI, and co-developer of spaCy and Prodigy. Ines offers expert insights into the evolution of these tools, Explosion's unique business model, and the tr

This article explores Retrieval Augmented Generation (RAG) systems and how AI agents can enhance their capabilities. Traditional RAG systems, while useful for leveraging custom enterprise data, suffer from limitations such as a lack of real-time dat


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools