


First article: A new paradigm for training multi-view 3D occupancy models using only 2D labels
This article is reprinted with the authorization of the Autonomous Driving Heart public account. Please contact the source for reprinting.
[RenderOcc, the first new paradigm for training multi-view 3D occupancy models using only 2D labels] The author extracts NeRF-style 3D volume representations from multi-view images and uses volume rendering techniques to build 2D reconstructions, thus Enables direct 3D supervision from 2D semantic and depth labels, reducing reliance on expensive 3D occupancy annotations. Extensive experiments show that RenderOcc performs comparably to fully supervised models using 3D labels, highlighting the importance of this approach in real-world applications. Already open source.
Title: RenderOcc: Vision-Centric 3D Occupancy Prediction with 2DRendering Supervision
Author affiliation: Peking University, Xiaomi Automobile, Hong Kong Chinese MMLAB
The content that needs to be rewritten is: Open source address: GitHub - pmj110119/RenderOcc
3D occupancy prediction has important prospects in the fields of robot perception and autonomous driving, which quantifies 3D scenes into grid cells with semantic labels. Recent work mainly utilizes complete occupancy labels in 3D voxel space for supervision. However, expensive annotation processes and sometimes ambiguous labels severely limit the usability and scalability of 3D occupancy models. To solve this problem, the authors propose RenderOcc, a new paradigm for training 3D occupancy models using only 2D labels. Specifically, we extract NeRF-style 3D volumetric representations from multi-view images and use volume rendering techniques to build 2D reconstructions, enabling direct 3D supervision from 2D semantic and depth labels. In addition, the authors introduce an auxiliary ray method to solve the sparse viewpoint problem in autonomous driving scenes, which utilizes sequential frames to build a comprehensive 2D rendering for each target. RenderOcc is the first attempt to train a multi-view 3D occupancy model using only 2D labels, reducing the reliance on expensive 3D occupancy annotations. Extensive experiments show that RenderOcc performs comparably to fully supervised models using 3D labels, highlighting the importance of this approach in real-world applications.
Network structure:
Figure 1 shows a new training method for RenderOcc. Different from previous methods that rely on expensive 3D occupancy labels for supervision, the RenderOcc proposed in this paper utilizes 2D labels to train the 3D occupancy network. With 2D rendering supervision, the model is able to benefit from fine-grained 2D pixel-level semantics and depth supervision
Figure 2. Overall framework of RenderOcc. This paper extracts volumetric features through a 2D to 3D network and predicts the density and semantics of each voxel. Therefore, this paper generates a Semantic Density Field, which can perform volume rendering to generate rendered 2D semantics and depth. For the generation of Rays GT, this paper extracts auxiliary rays from adjacent frames to supplement the rays of the current frame and uses the proposed weighted ray sampling strategy to purify them. Then, this article uses ray GT and {} to calculate the loss to achieve rendering supervision of 2D labels
Rewritten content: Figure 3. Auxiliary light: A single frame image cannot capture the multi-view information of the object well. There is only a small overlap area between adjacent cameras and the difference in viewing angle is limited. By introducing auxiliary rays from adjacent frames, the model can significantly benefit from multi-view consistency constraints
Experimental results:
The content that needs to be rewritten is: Original link: https://mp.weixin.qq.com/s/WzI8mGoIOTOdL8irXrbSPQ
The above is the detailed content of First article: A new paradigm for training multi-view 3D occupancy models using only 2D labels. For more information, please follow other related articles on the PHP Chinese website!

This article explores the growing concern of "AI agency decay"—the gradual decline in our ability to think and decide independently. This is especially crucial for business leaders navigating the increasingly automated world while retainin

Ever wondered how AI agents like Siri and Alexa work? These intelligent systems are becoming more important in our daily lives. This article introduces the ReAct pattern, a method that enhances AI agents by combining reasoning an

"I think AI tools are changing the learning opportunities for college students. We believe in developing students in core courses, but more and more people also want to get a perspective of computational and statistical thinking," said University of Chicago President Paul Alivisatos in an interview with Deloitte Nitin Mittal at the Davos Forum in January. He believes that people will have to become creators and co-creators of AI, which means that learning and other aspects need to adapt to some major changes. Digital intelligence and critical thinking Professor Alexa Joubin of George Washington University described artificial intelligence as a “heuristic tool” in the humanities and explores how it changes

LangChain is a powerful toolkit for building sophisticated AI applications. Its agent architecture is particularly noteworthy, allowing developers to create intelligent systems capable of independent reasoning, decision-making, and action. This expl

Radial Basis Function Neural Networks (RBFNNs): A Comprehensive Guide Radial Basis Function Neural Networks (RBFNNs) are a powerful type of neural network architecture that leverages radial basis functions for activation. Their unique structure make

Brain-computer interfaces (BCIs) directly link the brain to external devices, translating brain impulses into actions without physical movement. This technology utilizes implanted sensors to capture brain signals, converting them into digital comman

This "Leading with Data" episode features Ines Montani, co-founder and CEO of Explosion AI, and co-developer of spaCy and Prodigy. Ines offers expert insights into the evolution of these tools, Explosion's unique business model, and the tr

This article explores Retrieval Augmented Generation (RAG) systems and how AI agents can enhance their capabilities. Traditional RAG systems, while useful for leveraging custom enterprise data, suffer from limitations such as a lack of real-time dat


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.