


In-depth analysis of the garbage collector management principle of Go language
Garbage Collection (Garbage Collection) is one of the common features in modern programming languages, which can automatically manage memory , avoiding the tedious work of manual memory allocation and release by developers. As a language that takes both development efficiency and performance into account, the design and implementation of Go's garbage collector (Garbage Collector) is a very important part.
The garbage collector of the Go language adopts a generational garbage collection strategy, with three generations: young, mid and old. Among them, the young generation is the object with the shortest survival time, the mid generation is the object that survived the last young generation recycling, and the old generation is the object with the longest survival time. Each generation has a specific memory size. If this size is exceeded, the garbage collector will be triggered.
In the Go language, the garbage collector uses the Three-Color Marking algorithm to mark and recycle garbage objects. Specifically, it is divided into three colors: white, gray and black, which are used to mark the survival status of objects.
First, the garbage collector marks all objects as white, indicating that they have not been scanned by the garbage collector. Then, scan starting from the root object and mark the root object in gray, indicating that it has been scanned but its child objects have not yet been marked. Next, traverse the sub-objects of the gray object one by one and mark them as gray, repeating this process until there are no more gray objects. Finally, mark all scanned objects as black, indicating that they have been fully scanned by the garbage collector and are alive objects. White objects are considered garbage objects and will be recycled and released by the garbage collector.
In the Go language, the specific code implementation of the garbage collector is completed at runtime. There is a goroutine in the runtime package that is specifically responsible for garbage collection. This goroutine will periodically trigger the garbage collection process.
The following is a sample code of the working process of the garbage collector:
package main import "time" type Object struct { data []int next *Object } func main() { var head *Object for i := 0; i < 100000; i++ { obj := &Object{ data: make([]int, 10000), next: head, } head = obj time.Sleep(time.Duration(10) * time.Millisecond) } }
The above code first defines a simple object type Object, including a data field and a next pointer pointing to the next object. . In the main function, a large number of Object objects are created through a loop, and after each object is created, the time.Sleep function is used to pause the program for a period of time to simulate the survival time of the object.
When running the above code, we can observe the garbage collection process by setting the environment variable GODEBUG=gctrace=1
. When the program starts running, the garbage collector will output a piece of debugging information about the garbage collector, including the garbage collector's strategy, heap-related information, etc. As the program runs, the garbage collector will periodically trigger the garbage collection process and output relevant log information.
In summary, the garbage collector management principle of Go language is based on generational and three-color marking. The garbage collector will periodically trigger the garbage collection process, automatically identify and recycle objects that are no longer used, and release memory resources. By gaining a deeper understanding of how the garbage collector works, developers can better optimize and debug their code and play a greater role in developing high-performance Go applications.
The above is the detailed content of An in-depth analysis of the garbage collector management principles of Go language. For more information, please follow other related articles on the PHP Chinese website!

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

go语言能编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言。对Go语言程序进行编译的命令有两种:1、“go build”命令,可以将Go语言程序代码编译成二进制的可执行文件,但该二进制文件需要手动运行;2、“go run”命令,会在编译后直接运行Go语言程序,编译过程中会产生一个临时文件,但不会生成可执行文件。

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。

删除字符串的方法:1、用TrimSpace()来去除字符串空格;2、用Trim()、TrimLeft()、TrimRight()、TrimPrefix()或TrimSuffix()来去除字符串中全部、左边或右边指定字符串;3、用TrimFunc()、TrimLeftFunc()或TrimRightFunc()来去除全部、左边或右边指定规则字符串。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Linux new version
SublimeText3 Linux latest version

Notepad++7.3.1
Easy-to-use and free code editor

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Zend Studio 13.0.1
Powerful PHP integrated development environment
