How to implement graph traversal algorithm using java
How to use Java to implement graph traversal algorithm
Graph is an important data structure in discrete mathematics and is often used to describe the relationship between things. The graph traversal algorithm refers to the process of sequentially visiting all nodes in the graph starting from a certain node and following certain rules. Commonly used graph traversal algorithms include depth-first search (DFS) and breadth-first search (BFS). This article will introduce how to use Java language to implement these two graph traversal algorithms and provide specific sample codes.
1. Depth-first search (DFS)
Depth-first search is a pre-order traversal algorithm that recursively visits its adjacent nodes starting from a starting node until it encounters no future nodes. to the visited adjacent nodes, then backtrack to the previous node, and continue to visit unvisited adjacent nodes until the entire graph is traversed.
The following is a sample code for traversing the graph through depth-first search:
import java.util.*; class Graph { private int V; // 顶点的数量 private LinkedList<Integer> adj[]; // 邻接表 Graph(int v) { V = v; adj = new LinkedList[v]; for (int i = 0; i < v; ++i) adj[i] = new LinkedList(); } void addEdge(int v, int w) { adj[v].add(w); } void DFSUtil(int v, Boolean visited[]) { visited[v] = true; System.out.print(v + " "); Iterator<Integer> i = adj[v].listIterator(); while (i.hasNext()) { int n = i.next(); if (!visited[n]) DFSUtil(n, visited); } } void DFS(int v) { Boolean visited[] = new Boolean[V]; Arrays.fill(visited, false); DFSUtil(v, visited); } public static void main(String args[]) { Graph g = new Graph(4); g.addEdge(0, 1); g.addEdge(0, 2); g.addEdge(1, 2); g.addEdge(2, 0); g.addEdge(2, 3); g.addEdge(3, 3); System.out.println("从顶点2开始的遍历结果:"); g.DFS(2); } }
Output results:
从顶点2开始的遍历结果: 2 0 1 3
2. Breadth-first search (BFS)
Breadth Priority search is a horizontal traversal algorithm that starts from a starting node and visits nodes layer by layer until the entire graph is traversed. Use a queue to implement breadth-first search, taking one node from the queue at a time, and then adding its unvisited adjacent nodes to the queue.
The following is a sample code for traversing a graph through breadth-first search:
import java.util.*; class Graph { private int V; // 顶点的数量 private LinkedList<Integer> adj[]; // 邻接表 Graph(int v) { V = v; adj = new LinkedList[v]; for (int i = 0; i < v; ++i) adj[i] = new LinkedList(); } void addEdge(int v, int w) { adj[v].add(w); } void BFS(int v) { boolean visited[] = new boolean[V]; LinkedList<Integer> queue = new LinkedList<Integer>(); visited[v] = true; queue.add(v); while (queue.size() != 0) { v = queue.poll(); System.out.print(v + " "); Iterator<Integer> i = adj[v].listIterator(); while (i.hasNext()) { int n = i.next(); if (!visited[n]) { visited[n] = true; queue.add(n); } } } } public static void main(String args[]) { Graph g = new Graph(4); g.addEdge(0, 1); g.addEdge(0, 2); g.addEdge(1, 2); g.addEdge(2, 0); g.addEdge(2, 3); g.addEdge(3, 3); System.out.println("从顶点2开始的遍历结果:"); g.BFS(2); } }
Output results:
从顶点2开始的遍历结果: 2 0 3 1
In the above sample code, we use adjacency lists to represent the structure of the graph , and build the graph by adding edges. Then, we call the DFS and BFS methods respectively to traverse the graph. The output result is the node sequence obtained by the traversal algorithm.
Summary:
Through the introduction and sample code of this article, we can learn how to use Java language to implement graph traversal algorithms, including depth-first search and breadth-first search. These two traversal algorithms are widely used in reality, such as web crawlers, maze solving and other fields. Mastering the graph traversal algorithm, we can solve related problems quickly and effectively.
The above is the detailed content of How to implement graph traversal algorithm using java. For more information, please follow other related articles on the PHP Chinese website!

Javadevelopmentisnotentirelyplatform-independentduetoseveralfactors.1)JVMvariationsaffectperformanceandbehavioracrossdifferentOS.2)NativelibrariesviaJNIintroduceplatform-specificissues.3)Filepathsandsystempropertiesdifferbetweenplatforms.4)GUIapplica

Java code will have performance differences when running on different platforms. 1) The implementation and optimization strategies of JVM are different, such as OracleJDK and OpenJDK. 2) The characteristics of the operating system, such as memory management and thread scheduling, will also affect performance. 3) Performance can be improved by selecting the appropriate JVM, adjusting JVM parameters and code optimization.

Java'splatformindependencehaslimitationsincludingperformanceoverhead,versioncompatibilityissues,challengeswithnativelibraryintegration,platform-specificfeatures,andJVMinstallation/maintenance.Thesefactorscomplicatethe"writeonce,runanywhere"

Platformindependenceallowsprogramstorunonanyplatformwithoutmodification,whilecross-platformdevelopmentrequiressomeplatform-specificadjustments.Platformindependence,exemplifiedbyJava,enablesuniversalexecutionbutmaycompromiseperformance.Cross-platformd

JITcompilationinJavaenhancesperformancewhilemaintainingplatformindependence.1)Itdynamicallytranslatesbytecodeintonativemachinecodeatruntime,optimizingfrequentlyusedcode.2)TheJVMremainsplatform-independent,allowingthesameJavaapplicationtorunondifferen

Javaispopularforcross-platformdesktopapplicationsduetoits"WriteOnce,RunAnywhere"philosophy.1)ItusesbytecodethatrunsonanyJVM-equippedplatform.2)LibrarieslikeSwingandJavaFXhelpcreatenative-lookingUIs.3)Itsextensivestandardlibrarysupportscompr

Reasons for writing platform-specific code in Java include access to specific operating system features, interacting with specific hardware, and optimizing performance. 1) Use JNA or JNI to access the Windows registry; 2) Interact with Linux-specific hardware drivers through JNI; 3) Use Metal to optimize gaming performance on macOS through JNI. Nevertheless, writing platform-specific code can affect the portability of the code, increase complexity, and potentially pose performance overhead and security risks.

Java will further enhance platform independence through cloud-native applications, multi-platform deployment and cross-language interoperability. 1) Cloud native applications will use GraalVM and Quarkus to increase startup speed. 2) Java will be extended to embedded devices, mobile devices and quantum computers. 3) Through GraalVM, Java will seamlessly integrate with languages such as Python and JavaScript to enhance cross-language interoperability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version
Recommended: Win version, supports code prompts!
