search
HomeJavajavaTutorialHow to implement graph traversal algorithm using java
How to implement graph traversal algorithm using javaSep 19, 2023 am 11:30 AM
Graph traversal algorithm - graph traversaljava graph traversal - java graph algorithmGraph traversal implementation - graph algorithm

How to implement graph traversal algorithm using java

How to use Java to implement graph traversal algorithm

Graph is an important data structure in discrete mathematics and is often used to describe the relationship between things. The graph traversal algorithm refers to the process of sequentially visiting all nodes in the graph starting from a certain node and following certain rules. Commonly used graph traversal algorithms include depth-first search (DFS) and breadth-first search (BFS). This article will introduce how to use Java language to implement these two graph traversal algorithms and provide specific sample codes.

1. Depth-first search (DFS)

Depth-first search is a pre-order traversal algorithm that recursively visits its adjacent nodes starting from a starting node until it encounters no future nodes. to the visited adjacent nodes, then backtrack to the previous node, and continue to visit unvisited adjacent nodes until the entire graph is traversed.

The following is a sample code for traversing the graph through depth-first search:

import java.util.*;
 
class Graph {
    private int V; // 顶点的数量
    private LinkedList<Integer> adj[]; // 邻接表
 
    Graph(int v) {
        V = v;
        adj = new LinkedList[v];
        for (int i = 0; i < v; ++i)
            adj[i] = new LinkedList();
    }
 
    void addEdge(int v, int w) {
        adj[v].add(w);
    }
 
    void DFSUtil(int v, Boolean visited[]) {
        visited[v] = true;
        System.out.print(v + " ");
 
        Iterator<Integer> i = adj[v].listIterator();
        while (i.hasNext()) {
            int n = i.next();
            if (!visited[n])
                DFSUtil(n, visited);
        }
    }
 
    void DFS(int v) {
        Boolean visited[] = new Boolean[V];
        Arrays.fill(visited, false);
 
        DFSUtil(v, visited);
    }
 
    public static void main(String args[]) {
        Graph g = new Graph(4);
 
        g.addEdge(0, 1);
        g.addEdge(0, 2);
        g.addEdge(1, 2);
        g.addEdge(2, 0);
        g.addEdge(2, 3);
        g.addEdge(3, 3);
 
        System.out.println("从顶点2开始的遍历结果:");
        g.DFS(2);
    }
}

Output results:

从顶点2开始的遍历结果:
2 0 1 3

2. Breadth-first search (BFS)

Breadth Priority search is a horizontal traversal algorithm that starts from a starting node and visits nodes layer by layer until the entire graph is traversed. Use a queue to implement breadth-first search, taking one node from the queue at a time, and then adding its unvisited adjacent nodes to the queue.

The following is a sample code for traversing a graph through breadth-first search:

import java.util.*;
 
class Graph {
    private int V; // 顶点的数量
    private LinkedList<Integer> adj[]; // 邻接表
 
    Graph(int v) {
        V = v;
        adj = new LinkedList[v];
        for (int i = 0; i < v; ++i)
            adj[i] = new LinkedList();
    }
 
    void addEdge(int v, int w) {
        adj[v].add(w);
    }
 
    void BFS(int v) {
        boolean visited[] = new boolean[V];
 
        LinkedList<Integer> queue = new LinkedList<Integer>();
 
        visited[v] = true;
        queue.add(v);
 
        while (queue.size() != 0) {
            v = queue.poll();
            System.out.print(v + " ");
 
            Iterator<Integer> i = adj[v].listIterator();
            while (i.hasNext()) {
                int n = i.next();
                if (!visited[n]) {
                    visited[n] = true;
                    queue.add(n);
                }
            }
        }
    }
 
    public static void main(String args[]) {
        Graph g = new Graph(4);
 
        g.addEdge(0, 1);
        g.addEdge(0, 2);
        g.addEdge(1, 2);
        g.addEdge(2, 0);
        g.addEdge(2, 3);
        g.addEdge(3, 3);
 
        System.out.println("从顶点2开始的遍历结果:");
        g.BFS(2);
    }
}

Output results:

从顶点2开始的遍历结果:
2 0 3 1

In the above sample code, we use adjacency lists to represent the structure of the graph , and build the graph by adding edges. Then, we call the DFS and BFS methods respectively to traverse the graph. The output result is the node sequence obtained by the traversal algorithm.

Summary:

Through the introduction and sample code of this article, we can learn how to use Java language to implement graph traversal algorithms, including depth-first search and breadth-first search. These two traversal algorithms are widely used in reality, such as web crawlers, maze solving and other fields. Mastering the graph traversal algorithm, we can solve related problems quickly and effectively.

The above is the detailed content of How to implement graph traversal algorithm using java. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Top 4 JavaScript Frameworks in 2025: React, Angular, Vue, SvelteTop 4 JavaScript Frameworks in 2025: React, Angular, Vue, SvelteMar 07, 2025 pm 06:09 PM

This article analyzes the top four JavaScript frameworks (React, Angular, Vue, Svelte) in 2025, comparing their performance, scalability, and future prospects. While all remain dominant due to strong communities and ecosystems, their relative popul

Spring Boot SnakeYAML 2.0 CVE-2022-1471 Issue FixedSpring Boot SnakeYAML 2.0 CVE-2022-1471 Issue FixedMar 07, 2025 pm 05:52 PM

This article addresses the CVE-2022-1471 vulnerability in SnakeYAML, a critical flaw allowing remote code execution. It details how upgrading Spring Boot applications to SnakeYAML 1.33 or later mitigates this risk, emphasizing that dependency updat

Node.js 20: Key Performance Boosts and New FeaturesNode.js 20: Key Performance Boosts and New FeaturesMar 07, 2025 pm 06:12 PM

Node.js 20 significantly enhances performance via V8 engine improvements, notably faster garbage collection and I/O. New features include better WebAssembly support and refined debugging tools, boosting developer productivity and application speed.

How do I implement multi-level caching in Java applications using libraries like Caffeine or Guava Cache?How do I implement multi-level caching in Java applications using libraries like Caffeine or Guava Cache?Mar 17, 2025 pm 05:44 PM

The article discusses implementing multi-level caching in Java using Caffeine and Guava Cache to enhance application performance. It covers setup, integration, and performance benefits, along with configuration and eviction policy management best pra

How does Java's classloading mechanism work, including different classloaders and their delegation models?How does Java's classloading mechanism work, including different classloaders and their delegation models?Mar 17, 2025 pm 05:35 PM

Java's classloading involves loading, linking, and initializing classes using a hierarchical system with Bootstrap, Extension, and Application classloaders. The parent delegation model ensures core classes are loaded first, affecting custom class loa

How to Share Data Between Steps in CucumberHow to Share Data Between Steps in CucumberMar 07, 2025 pm 05:55 PM

This article explores methods for sharing data between Cucumber steps, comparing scenario context, global variables, argument passing, and data structures. It emphasizes best practices for maintainability, including concise context use, descriptive

Iceberg: The Future of Data Lake TablesIceberg: The Future of Data Lake TablesMar 07, 2025 pm 06:31 PM

Iceberg, an open table format for large analytical datasets, improves data lake performance and scalability. It addresses limitations of Parquet/ORC through internal metadata management, enabling efficient schema evolution, time travel, concurrent w

How can I implement functional programming techniques in Java?How can I implement functional programming techniques in Java?Mar 11, 2025 pm 05:51 PM

This article explores integrating functional programming into Java using lambda expressions, Streams API, method references, and Optional. It highlights benefits like improved code readability and maintainability through conciseness and immutability

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft