Home >Backend Development >C++ >Add all larger values in the given binary search tree to each node
Here we will see an interesting problem, we will add a larger value to each node in a given binary search tree. So the initial and final tree will look like this -
##AlgorithmbstUpdate(root, sum) -Begin if root is null, then stop bstUpdate(right of room, sum) sum := sum + value of root update root value using sum bstUpdate(left of room, sum) EndExample
#include<iostream> using namespace std; class Node { public: int data; Node *left, *right; }; Node *getNode(int item) { Node *newNode = new Node(); newNode->data = item; newNode->left = newNode->right = NULL; return newNode; } void updateBST(Node *root, int *sum) { if (root == NULL) return; updateBST(root->right, sum); //update right sub tree *sum = *sum + root->data; root->data = *sum; //update root data updateBST(root->left, sum); //update left sub tree } void BSTUpdate(Node *root) { int sum = 0; updateBST(root, &sum); } void inorder(Node *root) { if (root != NULL) { inorder(root->left); cout<<root->data<<" "; inorder(root->right); } } Node* insert(Node* node, int data) { if (node == NULL) return getNode(data); if (data <= node->data) //go to left node->left = insert(node->left, data); else //go to right node->right = insert(node->right, data); return node; } int main() { int data[] = {50, 30, 20, 40, 70, 60, 80}; int n = sizeof(data)/sizeof(data[0]); Node *root = NULL; for(int i = 0; i < n; i++) { root = insert(root, data[i]); } BSTUpdate(root); inorder(root); }
350 330 300 260 210 150 80
The above is the detailed content of Add all larger values in the given binary search tree to each node. For more information, please follow other related articles on the PHP Chinese website!