Query to update the number of connected non-empty cells in a matrix
A matrix can be thought of as a collection of cells organized in rows and columns. Each cell can contain a value, which can be empty or non-empty. In computer programming, matrices are often used to represent data in a two-dimensional grid.
In this article, we will discuss how to efficiently count the number of connected non-empty cells in a matrix, taking into account possible updates to the matrix. We'll explore different ways to solve this problem and provide real-world code examples to demonstrate implementation.
grammar
The basic syntax for querying the number of connected non-empty cells in a matrix and updating it using C/C can be defined as follows -
int queryCount(int matrix[][MAX_COLS], int rows, int cols);
Where matrix is the input "matrix", "rows" and "cols" represent the number of rows and columns in the matrix respectively. The function "queryCount" returns an integer value representing the number of connected non-empty cells in the matrix.
algorithm
To solve this problem, we can follow the following algorithm -
Step 1 - Initialize the variable "count" to 0, this will store the count of connected non-empty cells.
Step 2 - Iterate over each cell in the matrix.
Step 3 - For each cell, check whether it is non-empty (i.e. contains a non-null value).
Step 4 - If the cell is not empty, increase the Count by 1.
Step 5 - Check if the cell has any non-empty adjacent cells.
Step 6 - If the adjacent cell is not empty, increase the Count by 1.
Step 7 - Repeat steps 5-6 for all adjacent cells.
Step 8 - 8: After iterating through all cells in the matrix, return "count" as the final result.
method
Method 1 - A common way to solve this problem is to use the Depth First Search (DFS) algorithm
Method 2 - Another way to implement a query to find the count of non-empty cells with joins in an updated matrix is to use the Breadth-First Search (BFS) algorithm.
method 1
In this approach, the DFS algorithm involves recursively traversing the matrix and keeping track of visited cells to avoid double counting.
Example 1
This method performs a depth-first search on a two-dimensional matrix. The dimensions, cell values, and number of queries of the matrix are randomly determined. The countConnectedCells subroutine performs DFS and returns a count of connected, non-empty cells, starting with the cell at the specified row and column. The updateCell function updates the value of a cell in a matrix. The main function starts a random seed using the current time, then generates a random matrix size and elements, followed by a random number of queries. For each query, the code randomly selects a count query (1) or an update query (2) and performs the appropriate action. If the query's type is 1, the countConnectedCells function is called to determine the count of connected, non-empty cells and prints the result. If the query type is 2, call the updateCell function to adjust the value of the specified cell.
#include <iostream> using namespace std; const int MAX_SIZE = 100; // Maximum size of the matrix // Function to count connected non-empty cells using DFS int countConnectedCells(int matrix[][MAX_SIZE], int rows, int cols, int row, int col, int visited[][MAX_SIZE]) { if (row < 0 || row >= rows || col < 0 || col >= cols || matrix[row][col] == 0 || visited[row][col]) return 0; visited[row][col] = 1; int count = 1; // Counting the current cell as non-empty count += countConnectedCells(matrix, rows, cols, row - 1, col, visited); // Check top cell count += countConnectedCells(matrix, rows, cols, row + 1, col, visited); // Check bottom cell count += countConnectedCells(matrix, rows, cols, row, col - 1, visited); // Check left cell count += countConnectedCells(matrix, rows, cols, row, col + 1, visited); // Check right cell return count; } // Function to update a cell in the matrix void updateCell(int matrix[][MAX_SIZE], int rows, int cols, int row, int col, int newValue) { matrix[row][col] = newValue; } // Function to initialize the matrix void initializeMatrix(int matrix[][MAX_SIZE], int rows, int cols) { for (int i = 0; i <rows; i++) { for (int j = 0; j < cols; j++) { cin >> matrix[i][j]; // Taking input for each cell in the matrix } } } int main() { int rows, cols; // Input matrix size cin >> rows >> cols; // Taking input for matrix size int matrix[MAX_SIZE][MAX_SIZE]; // Matrix to store the values int visited[MAX_SIZE][MAX_SIZE] = {0}; // Visited matrix to keep track of visited cells initializeMatrix(matrix, rows, cols); // Initialize the matrix with input values int queries; // Input number of queries cin >> queries; // Taking input for number of queries for (int i = 0; i < queries; i++) { int queryType; // Input query type (1 for count query, 2 for update query) cin >> queryType; // Taking input for query type if (queryType == 1) { int row, col; // Input row and column for count query cin >> row >> col; // Taking input for row and column int count = countConnectedCells(matrix, rows, cols, row, col, visited); // Call countConnectedCells function cout << "Count of connected non-empty cells at (" << row << ", " << col << "): " << count << endl; // Print result } else if (queryType == 2) { int row, col, newValue; // Input row, column, and new value for update query cin >> row >> col >> newValue; // Taking input for row, column, and new value updateCell(matrix, rows, cols, row, col, newValue); // Call updateCell function } } return 0; }
Output
Count of connected non-empty cells at (1, 2): 0 Count of connected non-empty cells at (0, 1): 2
Method 2
In this approach, Breadth First Search (BFS) is another graph traversal algorithm that can be used to find the number of connected non-empty cells in a matrix. In BFS, we start from a given cell and explore all its neighboring cells in a breadth-first manner (i.e., layer-by-layer). We use a queue to keep track of which cells are being accessed, and mark cells that have been accessed to avoid multiple counts.
Example 2
This code constitutes a software that performs a breadth-first search algorithm on a two-dimensional matrix. The dimensions of the matrix, cell values, and number of queries are generated arbitrarily. The code contains two subroutines: one to perform BFS and another to adjust the cells within the matrix.
BFS operation starts with a randomly selected cell and checks its neighboring cells to determine if they are interconnected and unoccupied. If so, they will be appended to the queue and processed in a similar manner. Updating a cell within a matrix only involves changing its value. After generating the matrix and query number, the code randomly selects a BFS query or an update query and performs the appropriate operation. The result of the BFS query is a count of interconnected unoccupied cells starting from the selected cell.
Code
#include <iostream> #include <queue> #include <ctime> #include <cstdlib> using namespace std; const int MAX_SIZE = 100; // Function to perform Breadth-First Search (BFS) int bfs(int matrix[][MAX_SIZE], int rows, int cols, int row, int col, int visited[][MAX_SIZE]) { int count = 0; queue<pair<int, int>> q; q.push({row, col}); while (!q.empty()) { pair<int, int> currentCell = q.front(); q.pop(); int currentRow = currentCell.first; int currentCol = currentCell.second; if (currentRow >= 0 && currentRow <rows && currentCol >= 0 && currentCol < cols && !visited[currentRow][currentCol] && matrix[currentRow][currentCol] == 1) { count++; visited[currentRow][currentCol] = 1; q.push({currentRow - 1, currentCol}); q.push({currentRow + 1, currentCol}); q.push({currentRow, currentCol - 1}); q.push({currentRow, currentCol + 1}); } } return count; } // Function to update a cell in the matrix void updateCell(int matrix[][MAX_SIZE], int row, int col, int newValue) { matrix[row][col] = newValue; } // Function to generate a random integer between min and max (inclusive) int randomInt(int min, int max) { return rand() % (max - min + 1) + min; } int main() { srand(time(0)); int rows = randomInt(1, 10); int cols = randomInt(1, 10); int matrix[MAX_SIZE][MAX_SIZE]; int visited[MAX_SIZE][MAX_SIZE] = {0}; for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { matrix[i][j] = randomInt(0, 1); } } int queries = randomInt(1, 5); for (int i = 0; i < queries; i++) { int queryType = randomInt(1, 2); if (queryType == 1) { int row = randomInt(0, rows - 1); int col = randomInt(0, cols - 1); int count = bfs(matrix, rows, cols, row, col, visited); cout << "Count of connected non-empty cells at (" << row << ", " << col << "): " << count << endl; } else if (queryType == 2) { int row = randomInt(0, rows - 1); int col = randomInt(0, cols - 1); int newValue = randomInt(0, 1); updateCell(matrix, row, col, newValue); } } return 0; }
Output
Count of connected non-empty cells at (0, 0): 0
in conclusion
In this article, we discussed two methods of using C/C to find the number of connected non-empty cells in a matrix and update them. Depth First Search (DFS) algorithm and union search (union of disjoint sets). It is important to analyze the time complexity and space complexity of each method before choosing the most appropriate method for a specific use case.
The above is the detailed content of Query to update the number of connected non-empty cells in a matrix. For more information, please follow other related articles on the PHP Chinese website!

There are four commonly used XML libraries in C: TinyXML-2, PugiXML, Xerces-C, and RapidXML. 1.TinyXML-2 is suitable for environments with limited resources, lightweight but limited functions. 2. PugiXML is fast and supports XPath query, suitable for complex XML structures. 3.Xerces-C is powerful, supports DOM and SAX resolution, and is suitable for complex processing. 4. RapidXML focuses on performance and parses extremely fast, but does not support XPath queries.

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

The main differences between C# and C are syntax, performance and application scenarios. 1) The C# syntax is more concise, supports garbage collection, and is suitable for .NET framework development. 2) C has higher performance and requires manual memory management, which is often used in system programming and game development.

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

There are significant differences in how C# and C implement and features in object-oriented programming (OOP). 1) The class definition and syntax of C# are more concise and support advanced features such as LINQ. 2) C provides finer granular control, suitable for system programming and high performance needs. Both have their own advantages, and the choice should be based on the specific application scenario.

Converting from XML to C and performing data operations can be achieved through the following steps: 1) parsing XML files using tinyxml2 library, 2) mapping data into C's data structure, 3) using C standard library such as std::vector for data operations. Through these steps, data converted from XML can be processed and manipulated efficiently.

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version
Useful JavaScript development tools

Atom editor mac version download
The most popular open source editor

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software