Binary tree is a data structure in which each node can have up to two child nodes. These children are called left children and right children respectively. Suppose we are given a parent array representation, you have to use it to create a binary tree. A binary tree may have several isosceles triangles. We have to find the total number of possible isosceles triangles in this binary tree.
In this article, we will explore several techniques to solve this problem in C.
Understanding Questions
Gives you a parent array. You have to represent it in the form of a binary tree so that the array index forms the value of the tree node and the value in the array gives the parent node of that particular index.
Please note that -1 is always the root parent node. Given below is an array and its binary tree representation.
Parent array = [0, -1, 3, 1, 1, 2, 2, 3, 4, 4]
Binary tree -
In any binary tree, we can have three types of isosceles triangles -
Left Isosceles Triangle − In this triangle, the vertex is a left The child node of the parent node, and the vertices forming the base (both sides of the isosceles triangle) are the left child nodes of the vertex. Child nodes can be direct or indirect. In the tree above, we have two such isosceles triangles - (2, 6, 3), (3, 7, 1).
Right Isosceles Triangle − In this triangle, the vertex is rightChildren of the parent, while the vertices forming the base are the right children of the vertices. Children can be direct or indirect. In the tree above, we have only one such isosceles triangle (4, 1, 8).
Balanced Isosceles Triangle − In this triangle, the vertices forming the base are the left and right child nodes of the vertex node. In the tree above, we have five such isosceles triangles (1, 3, 4), (3, 2, 7), (4, 8, 9), (2, 5, 6), (1, 2, 9)
Therefore, for the above binary tree, we have a total of 8 isosceles triangles.
Traversal using depth-first search
Depth First Search (DFS) is a method of traversing all nodes of a tree in a depth manner. It starts at the root node, moves to each branch, and then backtracks.
First, we use DFS to traverse each node of the binary tree and convert it into a graph so that each node is represented as adjacent to each other. This makes traversal easier.
For each node, we check whether it has child nodes. After checking, we use the sort(node[x].begin(), node[x].end()) function to sort them.
Next, we check whether the current node is the left or right successor of its corresponding parent node. We use the DFS function recursively on all nodes of the binary tree.
If the current node has two children (either directly or indirectly), we check the possibility that an isosceles triangle exists by calculating the edges between them. We will find the edges between them through the graph function given in the code below.
Finally, we calculate the total number of isosceles triangles by adding up all possible triangles in different positions.
Example
#include <iostream> #include <vector> #include <algorithm> #include <cstring> using namespace std; #define MAX int(1e5) vector < int > * node; int right_down[MAX]; int right_up[MAX]; int left_down[MAX]; int left_up[MAX]; // DFS traversal over a node void DFS(int x, int * parent) { // Check if adjacent nodes are present for node x if (node[x].size() != 0) sort(node[x].begin(), node[x].end()); // Check whether the node has a parent node if (parent[x] != -1) { int indexOfParent = parent[x]; int childrenCount = node[indexOfParent].size(); if (childrenCount > 1) { int parentFirstChild = node[indexOfParent][0]; // Check if current node is left node of the parent if (x == parentFirstChild) { right_up[x] += right_up[indexOfParent] + 1; // Check if current node is right node of the parent } else { left_up[x] += left_up[indexOfParent] + 1; } } else { right_up[x] += right_up[indexOfParent] + 1; } } // Iterate over children of current node for (int i = 0; i < node[x].size(); ++i) { int y = node[x][i]; DFS(y, parent); // left child of current node if (i == 0) { left_down[x] += left_down[y] + 1; } // right child of current node else { right_down[x] += right_down[y] + 1; } } } int graph(int * parent, int N) { int rootNode; node = new vector < int > [N]; for (int i = 0; i < N; ++i) { if (parent[i] != -1) { node[parent[i]].push_back(i); } else { rootNode = i; } left_up[i] = 0; right_up[i] = 0; left_down[i] = 0; right_down[i] = 0; } return rootNode; } int main() { int N = 10; int parent[] = { 0, -1, 3, 1, 1, 2, 2, 3, 4, 4 }; int rootNode = graph(parent, N); DFS(rootNode, parent); int count = 0; // Counting the total isosceles triangles for (int i = 0; i < N; ++i) { count += min(right_down[i], right_up[i]); count += min(left_down[i], left_up[i]); count += min(left_down[i], right_down[i]); } cout << "Number of isosceles triangles in the binary tree are " << count; return 0; }
Output
Number of isosceles triangles in the binary tree are 8
in conclusion
We have discussed how to find the total number of equilateral triangles in a binary tree when given a parent array. We can achieve this by using depth-first search, which allows us to traverse a binary tree.
The above is the detailed content of The number of isosceles triangles in a binary tree. For more information, please follow other related articles on the PHP Chinese website!

分布外(OOD)检测对于开放世界智能系统的可靠运行至关重要,但目前面向对象的检测方法存在「评估不一致」(evaluationinconsistencies)的问题。之前的工作OpenOODv1统一了OOD检测的评估,但在可扩展性和可用性方面仍然存在限制。最近开发团队再次提出OpenOODv1.5,相比上一版本,新的OOD检测方法评估在确保准确、标准化和用户友好等方面得到显著提升。图片Paper:https://arxiv.org/abs/2306.09301OpenOODCodebase:htt

在准确率-召回率曲线上,同样的点是用不同的坐标轴绘制的。警告:左边的第一个红点(0%召回率,100%精度)对应于0条规则。左边的第二个点是第一个规则,等等。 Skope-rules使用树模型生成规则候选项。首先建立一些决策树,并将从根节点到内部节点或叶子节点的路径视为规则候选项。然后通过一些预定义的标准(如精确度和召回率)对这些候选规则进行过滤。只有那些精确度和召回率高于其阈值的才会被保留。最后,应用相似性过滤来选择具有足够多样性的规则。一般情况下,应用Skope-rules来学习每个根本原因的

任务是打印给定二叉树的左节点。首先,用户将插入数据,从而生成二叉树,然后打印所形成的树的左视图。每个节点最多可以有2个子节点,因此这里程序必须仅遍历与节点关联的左指针如果左指针不为空,则意味着它将有一些与之关联的数据或指针,否则它将是要打印并显示为输出的左子级。示例Input:10324Output:102这里,橙色节点代表二叉树的左视图。在给定的图中,数据为1的节点是根节点,因此它将被打印,而不是转到左子节点,它将打印0,然后它将转到3并打印其左子节点,即2。我们可以使用递归方法来存储节点的级

二叉树是计算机科学中常见的数据结构,也是Java编程中常用的一种数据结构。本文将详细介绍Java中的二叉树结构。一、什么是二叉树?在计算机科学中,二叉树是一种树形结构,每个节点最多有两个子节点。其中,左侧子节点比父节点小,右侧子节点则比父节点大。在Java编程中,常用二叉树表示排序,搜索以及提高对数据的查询效率。二、Java中的二叉树实现在Java中,二叉树

在Java中,在运行时传递参数的一种方法是使用命令行或终端。在检索命令行参数的这些值时,我们可能需要查找用户在运行时提供的参数数量,这可以借助length属性来实现。本文旨在借助示例程序解释传递和获取用户提供的参数数量的过程。获取用户在运行时提供的参数数量在查找命令行参数的数量之前,我们的第一步是创建一个允许用户在运行时传递参数的程序。字符串[]参数在编写Java程序时,我们经常遇到main()方法。当JVM调用此方法时,Java应用程序开始执行。它与一个名为String[]args的参数一起使

Linux命令是系统管理员日常工作中必不可少的工具之一,它们可以帮助我们完成各种系统管理任务。在运维工作中,有时候需要查看系统中某个进程的数量以便及时发现问题和进行调优。本文将介绍如何使用Linux命令查看telnet进程的数量,让我们一起来学习吧。在Linux系统中,我们可以使用ps命令结合grep命令来查看telnet进程的数量。首先,我们需要打开终端,

任务是打印给定二叉树的右节点。首先用户将插入数据以创建二叉树,然后打印所形成的树的右视图。上图展示了使用节点10、42、93、14、35、96、57和88创建的二叉树,其中选择并显示在树的右侧的节点。例如,10、93、57和88是二叉树的最右节点。示例Input:1042931435965788Output:10935788每个节点都有两个指针,即左指针和右指针。根据这个问题,程序只需遍历右节点。因此,不需要考虑节点的左子节点。右视图存储了所有那些是其所在层级的最后一个节点的节点。因此,我们可以

在本文中,我们将使用C++解决寻找最大值和最小值相同的子数组数量的问题。以下是该问题的示例−Input:array={2,3,6,6,2,4,4,4}Output:12Explanation:{2},{3},{6},{6},{2},{4},{4},{4},{6,6},{4,4},{4,4}and{4,4,4}arethesubarrayswhichcanbeformedwithmaximumandminimumelementsame.Input:array={3,3,1,5,


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download
The most popular open source editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
