


Teach you to use Python to connect with Baidu AI interface to create intelligent applications
Teach you how to use Python to connect with Baidu AI interface to create intelligent applications
With the rapid development of artificial intelligence, more and more applications have begun Introduce intelligent functions to improve user experience and work efficiency. Baidu AI is the leading artificial intelligence service provider in China, providing a wealth of interfaces and development tools, allowing developers to easily use artificial intelligence technology to build intelligent applications.
This article will teach you how to use the Python programming language to interface with Baidu AI interface to achieve some interesting intelligent functions. Next, we take image recognition, speech recognition and natural language processing as examples to show step by step how to connect with Baidu AI interface and give corresponding code examples.
- Image recognition
Baidu AI’s image recognition interface can identify objects, scenes, text, etc. in pictures. First, you need to create an account on the Baidu AI official website and apply for an API Key and Secret Key for image recognition. Then, use Python's requests library to send an HTTP request, send the image to be recognized to the Baidu AI interface, and parse the returned JSON result.
The following is a simple sample code for identifying objects in pictures:
import requests def image_recognition(image_path): url = "https://aip.baidubce.com/rest/2.0/image-classify/v2/advanced_general" access_token = "your_access_token" # 替换成你的API Key和Secret Key headers = {'Content-Type': 'application/x-www-form-urlencoded'} params = {'access_token': access_token} data = {'image': open(image_path, 'rb')} response = requests.post(url, headers=headers, params=params, files=data) result = response.json() if 'error_code' in result: print("图像识别失败:" + result['error_msg']) else: for item in result['result']: print(item['keyword'] + " (置信度:" + str(item['score']) + ")")
You only need to replace "your_access_token" in the above code with the API Key and Secret you applied for Key, then call the image_recognition
function and pass in the path of the image to be recognized to get the recognition result.
- Speech recognition
Baidu AI’s speech recognition interface can convert speech into text. In order to use this interface, you need to apply for a speech recognition API Key and Secret Key first. Then, use Python's PyAudio library to record audio, send the recorded audio data to the Baidu AI interface, and parse the returned JSON result.
The following is a simple sample code for converting audio files to text:
import requests import json import base64 import time import pyaudio import wave def audio_recognition(audio_path): url = "https://aip.baidubce.com/rpc/2.0/aasr/v1/recognize" access_token = "your_access_token" # 替换成你的API Key和Secret Key headers = {'Content-Type': 'application/json'} params = {'access_token': access_token} data = { 'speech': base64.b64encode(open(audio_path, 'rb').read()).decode('utf-8'), 'len': os.path.getsize(audio_path), 'rate': 16000 } response = requests.post(url, headers=headers, params=params, data=json.dumps(data)) result = response.json() if 'error_code' in result: print("语音识别失败:" + result['error_msg']) else: for item in result['result']: print(item['word'])
Replace "your_access_token" in the above code with the API Key and Secret Key you applied for, Then call the audio_recognition
function and pass in the path of the audio file to be recognized to get the recognition result.
- Natural Language Processing
Baidu AI’s natural language processing interface can implement text segmentation, part-of-speech tagging, sentiment analysis and other functions. To use this interface, you need to apply for a natural language processing API Key and Secret Key. Then, use Python's requests library to send HTTP requests, send the text data to be processed to the Baidu AI interface, and parse the returned JSON results.
The following is a simple sample code for sentiment analysis of text:
import requests import json def sentiment_analysis(text): url = "https://aip.baidubce.com/rpc/2.0/nlp/v1/sentiment_classify" access_token = "your_access_token" # 替换成你的API Key和Secret Key headers = {'Content-Type': 'application/json'} params = {'access_token': access_token} data = {'text': text} response = requests.post(url, headers=headers, params=params, data=json.dumps(data)) result = response.json() if 'error_code' in result: print("情感分析失败:" + result['error_msg']) else: sentiment = result['items'][0]['sentiment'] confidence = result['items'][0]['confidence'] print("情感类型:" + sentiment + " (置信度:" + str(confidence) + ")")
Replace "your_access_token" in the above code with the API Key and Secret Key you applied for, and then Call the sentiment_analysis
function and pass in the text to be analyzed to obtain the sentiment analysis results.
Through the above examples, you can see that it is very simple to use Python to connect with Baidu AI interface. Baidu AI provides a wealth of interfaces, covering many fields such as image recognition, speech recognition, and natural language processing. By making proper use of these interfaces, you can easily add intelligent functions to your applications and improve user experience and work efficiency. I hope you can give full play to the advantages of Baidu AI in actual development and create more intelligent applications.
The above is the detailed content of Teach you to use Python to connect with Baidu AI interface to create intelligent applications. For more information, please follow other related articles on the PHP Chinese website!

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version
Visual web development tools