


Golang image processing: how to illuminate and remove noise from images
Golang Image Processing: How to illuminate and remove noise from images
Abstract:
In image processing, lighting and denoising are common tasks . This article will introduce how to use Golang for image lighting and denoising. We will use the Go image processing library to implement these functions and provide corresponding code examples.
- Introduction
Image processing is one of the important applications in the field of computer vision. Lighting and noise issues are two major challenges that must be faced in image processing. Lighting problems refer to uneven or dim light in the picture, while noise problems refer to interfering pixels in the picture. Addressing these issues can improve the quality and clarity of your images. - Light lighting
Light lighting usually requires adjusting the brightness and contrast of the image. In Golang, we can use the imaging library to implement these functions. Here is a simple example code:
package main import ( "fmt" "github.com/disintegration/imaging" "image" ) func main() { src, err := imaging.Open("input.jpg") if err != nil { fmt.Println("failed to open image:", err) return } // 调整亮度和对比度 dst := imaging.AdjustBrightness(src, 20) dst = imaging.AdjustContrast(dst, 20) err = imaging.Save(dst, "output.jpg") if err != nil { fmt.Println("failed to save image:", err) return } fmt.Println("image processed successfully") }
In the above example, we first open an image and use imaging.AdjustBrightness
and imaging.AdjustContrast
Function to adjust brightness and contrast respectively. Finally, we save the processed image to the output file.
- Noise Removal
Noise removal is another common image processing task. In Golang, we can use the goimagehash library to achieve denoising. Here is a simple sample code:
package main import ( "fmt" "github.com/corona10/goimagehash" "image/jpeg" "os" ) func main() { file, err := os.Open("input.jpg") if err != nil { fmt.Println("failed to open image:", err) return } defer file.Close() img, err := jpeg.Decode(file) if err != nil { fmt.Println("failed to decode image:", err) return } // 使用 pHash 方法计算图片的哈希值 phash, err := goimagehash.PerceptionHash(img) if err != nil { fmt.Println("failed to calculate hash:", err) return } fmt.Println("original image hash:", phash.GetHash()) // 使用 AverageHash 方法对图片进行去噪 ahash, err := goimagehash.AverageHash(img) if err != nil { fmt.Println("failed to calculate average hash:", err) return } // 输出去噪后的图片的哈希值 fmt.Println("denoised image hash:", ahash.GetHash()) }
In the above example, we first opened an image and decoded it. Then use goimagehash.PerceptionHash
to calculate the hash value of the image, and then use the goimagehash.AverageHash
method to denoise the image. Finally, we output the hash value of the denoised image.
Summary:
This article introduces the method of lighting and denoising images in Golang. We can easily implement these functions by using the Go image processing library and goimagehash library. I hope readers can master the lighting and denoising technology in the image processing process through the sample code in this article.
The above is the detailed content of Golang image processing: how to illuminate and remove noise from images. For more information, please follow other related articles on the PHP Chinese website!

WhentestingGocodewithinitfunctions,useexplicitsetupfunctionsorseparatetestfilestoavoiddependencyoninitfunctionsideeffects.1)Useexplicitsetupfunctionstocontrolglobalvariableinitialization.2)Createseparatetestfilestobypassinitfunctionsandsetupthetesten

Go'serrorhandlingreturnserrorsasvalues,unlikeJavaandPythonwhichuseexceptions.1)Go'smethodensuresexpliciterrorhandling,promotingrobustcodebutincreasingverbosity.2)JavaandPython'sexceptionsallowforcleanercodebutcanleadtooverlookederrorsifnotmanagedcare

AneffectiveinterfaceinGoisminimal,clear,andpromotesloosecoupling.1)Minimizetheinterfaceforflexibilityandeaseofimplementation.2)Useinterfacesforabstractiontoswapimplementationswithoutchangingcallingcode.3)Designfortestabilitybyusinginterfacestomockdep

Centralized error handling can improve the readability and maintainability of code in Go language. Its implementation methods and advantages include: 1. Separate error handling logic from business logic and simplify code. 2. Ensure the consistency of error handling by centrally handling. 3. Use defer and recover to capture and process panics to enhance program robustness.

InGo,alternativestoinitfunctionsincludecustominitializationfunctionsandsingletons.1)Custominitializationfunctionsallowexplicitcontroloverwheninitializationoccurs,usefulfordelayedorconditionalsetups.2)Singletonsensureone-timeinitializationinconcurrent

Gohandlesinterfacesandtypeassertionseffectively,enhancingcodeflexibilityandrobustness.1)Typeassertionsallowruntimetypechecking,asseenwiththeShapeinterfaceandCircletype.2)Typeswitcheshandlemultipletypesefficiently,usefulforvariousshapesimplementingthe

Go language error handling becomes more flexible and readable through errors.Is and errors.As functions. 1.errors.Is is used to check whether the error is the same as the specified error and is suitable for the processing of the error chain. 2.errors.As can not only check the error type, but also convert the error to a specific type, which is convenient for extracting error information. Using these functions can simplify error handling logic, but pay attention to the correct delivery of error chains and avoid excessive dependence to prevent code complexity.

TomakeGoapplicationsrunfasterandmoreefficiently,useprofilingtools,leverageconcurrency,andmanagememoryeffectively.1)UsepprofforCPUandmemoryprofilingtoidentifybottlenecks.2)Utilizegoroutinesandchannelstoparallelizetasksandimproveperformance.3)Implement


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download
The most popular open source editor

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Linux new version
SublimeText3 Linux latest version

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
