Using proxy IP and anti-crawler strategies in Scrapy crawlers
In recent years, with the development of the Internet, more and more data needs to be obtained through crawlers, and the anti-crawler strategies for crawlers have become more and more important. Becoming more and more strict. In many scenarios, using proxy IP and anti-crawler strategies have become essential skills for crawler developers. In this article, we will discuss how to use proxy IP and anti-crawling strategies in Scrapy crawlers to ensure the stability and success rate of crawling data.
1. Why you need to use a proxy IP
When a crawler accesses the same website, it will often be identified as the same IP address, which can easily be blocked or restricted. To prevent this from happening, a proxy IP needs to be used to hide the real IP address, thus better protecting the identity of the crawler.
2. How to use proxy IP
Using proxy IP in Scrapy can be achieved by setting the DOWNLOADER_MIDDLEWARES attribute in the settings.py file.
- Add the following code in the settings.py file:
DOWNLOADER_MIDDLEWARES = { 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 1, 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None, 'your_project.middlewares.RandomUserAgentMiddleware': 400, 'your_project.middlewares.RandomProxyMiddleware': 410, }
- Define the RandomProxyMiddleware class in the middlewares.py file to implement the random proxy IP function:
import requests import random class RandomProxyMiddleware(object): def __init__(self, proxy_list_path): with open(proxy_list_path, 'r') as f: self.proxy_list = f.readlines() @classmethod def from_crawler(cls, crawler): settings = crawler.settings return cls(settings.get('PROXY_LIST_PATH')) def process_request(self, request, spider): proxy = random.choice(self.proxy_list).strip() request.meta['proxy'] = "http://" + proxy
Among them, the path to the proxy IP list needs to be set in the settings.py file:
PROXY_LIST_PATH = 'path/to/your/proxy/list'
When crawling, Scrapy will randomly select a proxy IP for access, thus This ensures the concealment of identity and the success rate of crawling.
3. About anti-crawler strategies
At present, anti-crawler strategies for websites are very common, ranging from simple User-Agent judgment to more complex verification codes and sliding bar verification. Below, we will discuss how to deal with several common anti-crawling strategies in Scrapy crawlers.
- User-Agent anti-crawler
In order to prevent crawler access, websites often determine the User-Agent field. If the User-Agent is not the browser's method, it will Intercept it. Therefore, we need to set a random User-Agent in the Scrapy crawler to avoid the User-Agent being recognized as a crawler.
Under middlewares.py, we define the RandomUserAgentMiddleware class to implement the random User-Agent function:
import random from scrapy.downloadermiddlewares.useragent import UserAgentMiddleware class RandomUserAgentMiddleware(UserAgentMiddleware): def __init__(self, user_agent): self.user_agent = user_agent @classmethod def from_crawler(cls, crawler): s = cls(crawler.settings.get('user_agent', 'Scrapy')) crawler.signals.connect(s.spider_closed, signal=signals.spider_closed) return s def process_request(self, request, spider): ua = random.choice(self.user_agent_list) if ua: request.headers.setdefault('User-Agent', ua)
At the same time, set the User-Agent list in the settings.py file:
USER_AGENT_LIST = ['Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36']
- IP Anti-Crawler
In order to prevent a large number of requests from the same IP address, the website may restrict or prohibit access to requests from the same IP address. For this situation, we can use proxy IP to avoid IP anti-crawlers by randomly switching IP addresses.
- Cookies and Session Anti-Crawler
Websites may identify the identity of the request by setting Cookies and Session, etc. These methods are often bound to accounts, and also The frequency of requests per account will be limited. Therefore, we need to simulate Cookies and Session in the Scrapy crawler to avoid being identified as illegal requests.
In Scrapy's settings.py file, we can configure the following:
COOKIES_ENABLED = True COOKIES_DEBUG = True
At the same time, define the CookieMiddleware class in the middlewares.py file to simulate the Cookies function:
from scrapy.exceptions import IgnoreRequest class CookieMiddleware(object): def __init__(self, cookies): self.cookies = cookies @classmethod def from_crawler(cls, crawler): return cls( cookies=crawler.settings.getdict('COOKIES') ) def process_request(self, request, spider): request.cookies.update(self.cookies)
Among them, the COOKIES settings are as follows:
COOKIES = { 'cookie1': 'value1', 'cookie2': 'value2', ... }
Cookies should be added to the cookies field of the request before the request is sent. If the request does not carry cookies, it is likely to be identified as an illegal request by the website.
4. Summary
The above is an introduction to the use of proxy IP and anti-crawler strategies in Scrapy crawlers. Using proxy IP and anti-crawler strategies is an important means to prevent crawlers from being restricted and banned. Of course, anti-crawler strategies emerge in endlessly, and we need to deal with different anti-crawler strategies accordingly.
The above is the detailed content of Using proxy IP and anti-crawling strategies in Scrapy crawler. For more information, please follow other related articles on the PHP Chinese website!

Scrapy实现微信公众号文章爬取和分析微信是近年来备受欢迎的社交媒体应用,在其中运营的公众号也扮演着非常重要的角色。众所周知,微信公众号是一个信息和知识的海洋,因为其中每个公众号都可以发布文章、图文消息等信息。这些信息可以被广泛地应用在很多领域中,比如媒体报道、学术研究等。那么,本篇文章将介绍如何使用Scrapy框架来实现微信公众号文章的爬取和分析。Scr

Scrapy是一个开源的Python爬虫框架,它可以快速高效地从网站上获取数据。然而,很多网站采用了Ajax异步加载技术,使得Scrapy无法直接获取数据。本文将介绍基于Ajax异步加载的Scrapy实现方法。一、Ajax异步加载原理Ajax异步加载:在传统的页面加载方式中,浏览器发送请求到服务器后,必须等待服务器返回响应并将页面全部加载完毕才能进行下一步操

Scrapy是一个功能强大的Python爬虫框架,可以用于从互联网上获取大量的数据。但是,在进行Scrapy开发时,经常会遇到重复URL的爬取问题,这会浪费大量的时间和资源,影响效率。本文将介绍一些Scrapy优化技巧,以减少重复URL的爬取,提高Scrapy爬虫的效率。一、使用start_urls和allowed_domains属性在Scrapy爬虫中,可

Scrapy是一款强大的Python爬虫框架,可以帮助我们快速、灵活地获取互联网上的数据。在实际爬取过程中,我们会经常遇到HTML、XML、JSON等各种数据格式。在这篇文章中,我们将介绍如何使用Scrapy分别爬取这三种数据格式的方法。一、爬取HTML数据创建Scrapy项目首先,我们需要创建一个Scrapy项目。打开命令行,输入以下命令:scrapys

在Scrapy爬虫中使用Selenium和PhantomJSScrapy是Python下的一个优秀的网络爬虫框架,已经被广泛应用于各个领域中的数据采集和处理。在爬虫的实现中,有时候需要模拟浏览器操作去获取某些网站呈现的内容,这时候就需要用到Selenium和PhantomJS。Selenium是模拟人类对浏览器的操作,让我们可以自动化地进行Web应用程序测试

近年来,人们对社交网络分析的需求越来越高。而QQ空间又是中国最大的社交网络之一,其数据的爬取和分析对于社交网络研究来说尤为重要。本文将介绍如何使用Scrapy框架来爬取QQ空间数据,并进行社交网络分析。一、Scrapy介绍Scrapy是一个基于Python的开源Web爬取框架,它可以帮助我们快速高效地通过Spider机制采集网站数据,并对其进行处理和保存。S

Scrapy是一款Python编写的强大的网络爬虫框架,它可以帮助用户从互联网上快速、高效地抓取所需的信息。然而,在使用Scrapy进行爬取的过程中,往往会遇到一些问题,例如抓取失败、数据不完整或爬取速度慢等情况,这些问题都会影响到爬虫的效率和稳定性。因此,本文将探讨Scrapy如何提高爬取稳定性和抓取效率。设置请求头和User-Agent在进行网络爬取时,

随着互联网的发展,人们越来越依赖于网络来获取信息。而对于图书爱好者而言,豆瓣图书已经成为了一个不可或缺的平台。并且,豆瓣图书也提供了丰富的图书评分和评论,使读者能够更加全面地了解一本图书。但是,手动获取这些信息无异于大海捞针,这时候,我们可以借助Scrapy工具进行数据爬取。Scrapy是一个基于Python的开源网络爬虫框架,它可以帮助我们高效地


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

WebStorm Mac version
Useful JavaScript development tools

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)
