search
HomeBackend DevelopmentPython TutorialHow to use Python regular expressions for code complexity analysis

How to use Python regular expressions for code complexity analysis

Jun 23, 2023 am 10:10 AM
code analysispython regular expressionCode complexity analysis

As software development continues to advance, code quality becomes more and more important. Code complexity analysis is one of the key links. Code complexity analysis can help developers discover potential problems, avoid loopholes and errors in the code, and improve the maintainability and readability of the code. This article will introduce how to use Python regular expressions for code complexity analysis.

  1. What is code complexity analysis

Code complexity is an indicator to measure the difficulty of code, including two aspects: the complexity of the code execution path and the code structure on the complexity. The complexity of an execution path is measured by the number of basic paths, which are simple paths in the program that do not contain loops. The complexity of the code structure depends on the number of nested levels of code blocks, control structures, and functions. These indicators can be used to quantitatively measure the complexity of a software system for better maintenance and testing.

  1. Use regular expressions to analyze code complexity

Regular expression is an expression used to match strings, usually used to search, replace and Split text. In code complexity analysis, we can use regular expressions to search for specific patterns in the code to count the number of nested levels of control structures and functions in the code, as well as the number of execution paths.

2.1 Search for control structures and functions

In Python, we can use regular expressions to search the beginning and end of control structures and functions such as if, for, while, and def in the code. Here is a simple regular expression example to match if statements in Python code:

if .*:

This regular expression matches any line of code that starts with if and ends with a colon. In this way, we can search for all if statements, for loops, and while loops in the code and count their nesting levels.

2.2 Calculate the number of nesting levels

The number of nesting levels refers to the number of levels of one control structure or function within another control structure or function. In order to count the number of nesting levels, we can use the stack structure in Python to save the code blocks and functions being processed. When we encounter a new control structure or function, we push it onto the stack and pop it after processing. The remaining elements in the stack represent the number of nesting levels. Here is a sample code:

import re

def parse_code(code):
    stack = []
    depth = 0

    for line in code.split("
"):
        if re.match(".*:s*$", line):
            stack.append("block")
            depth += 1
        elif re.match("def.*:", line):
            stack.append("function")
            depth += 1
        elif re.match(".*s(if|else|elif|for|while)s.*:", line):
            depth += 1
        while stack and stack[-1] != "block":
            stack.pop()
            depth -= 1
        if stack:
            print("{:>2}: {}".format(depth, line.strip()))

        if re.match("^s*$", line):
            while stack and stack[-1] != "block":
                stack.pop()
                depth -= 1
    return depth

This function splits the code by lines and then uses regular expressions to search for the if, else, elif, for and while keywords as well as function, def and colon. When a code block or function definition is encountered, it is pushed onto the stack. We then find the block of code or function we are working on at the top of the stack and calculate the depth as needed.

2.3 Calculate the number of basic paths

Basic paths refer to simple paths that do not contain loops in the program. In order to count the number of basic paths, we can use code coverage analysis techniques to traverse all paths of the program and count their number. The following is a sample code:

import re

def count_paths(code):
    paths = []
    visited = set()

    def walk(path):
        if path[-1] in visited:
            return

        visited.add(path[-1])

        if re.match(".*:s*$", path[-1]):
            paths.append(list(path))

        for i, line in enumerate(code.split("
")):
            if line == path[-1]:
                for j in range(i+1, len(code.split("
"))):
                    if line in code.split("
")[j]:
                        walk(path + [code.split("
")[j]])

    for i, line in enumerate(code.split("
")):
        if re.match(".*:s*$", line):
            walk([line])
            break

    return len(paths)

This function uses a recursive method to traverse all paths of lines in the code and only records simple paths that do not contain loops.

  1. Summary

Code complexity is a crucial parameter in software development. By calculating complexity, we can better understand the structure and difficulty of the program, and can Help developers find possible vulnerabilities and errors in their code. This article introduces how to use Python regular expressions for code complexity analysis, including searching for control structures and functions, calculating the number of nesting levels, and calculating the number of basic paths. I hope this article can help readers better understand and analyze the complexity of software code and improve the maintainability and readability of the code.

The above is the detailed content of How to use Python regular expressions for code complexity analysis. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python: compiler or Interpreter?Python: compiler or Interpreter?May 13, 2025 am 12:10 AM

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Python For Loop vs While Loop: When to Use Which?Python For Loop vs While Loop: When to Use Which?May 13, 2025 am 12:07 AM

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Python loops: The most common errorsPython loops: The most common errorsMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

For loop and while loop in Python: What are the advantages of each?For loop and while loop in Python: What are the advantages of each?May 13, 2025 am 12:01 AM

Forloopsareadvantageousforknowniterationsandsequences,offeringsimplicityandreadability;whileloopsareidealfordynamicconditionsandunknowniterations,providingcontrolovertermination.1)Forloopsareperfectforiteratingoverlists,tuples,orstrings,directlyacces

Python: A Deep Dive into Compilation and InterpretationPython: A Deep Dive into Compilation and InterpretationMay 12, 2025 am 12:14 AM

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Is Python an interpreted or a compiled language, and why does it matter?Is Python an interpreted or a compiled language, and why does it matter?May 12, 2025 am 12:09 AM

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

For Loop vs While Loop in Python: Key Differences ExplainedFor Loop vs While Loop in Python: Key Differences ExplainedMay 12, 2025 am 12:08 AM

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

For and While loops: a practical guideFor and While loops: a practical guideMay 12, 2025 am 12:07 AM

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor