search
HomeJavajavaTutorialDistributed task scheduling system based on Spring Cloud

With the complexity of business, many enterprises are faced with a large number of scheduled tasks that need to be executed, and the management and scheduling of these tasks have brought considerable pressure to enterprises. The traditional stand-alone task scheduling system can no longer meet the needs of enterprises, and the distributed task scheduling system has become a necessary choice. This article will introduce the design and implementation of a distributed task scheduling system based on Spring Cloud.

1. System architecture design

Spring Cloud provides a series of tools and frameworks, such as Eureka, Ribbon, Feign, Config, Hystrix, etc. These tools and frameworks enable us to implement distributed task scheduling The system has been of great help. The following is the architecture design diagram of the system:

Distributed task scheduling system based on Spring Cloud

The system is divided into four parts: task management center, scheduled task service, task executor, and log center.

  1. Task Management Center: The task management center is responsible for managing scheduled tasks in the entire system, providing operations such as adding, deleting, modifying, and stopping tasks, and pushing task information to the scheduled task service.
  2. Scheduled task service: Scheduled task service is the core component of the entire system. It receives task information pushed by the task management center and registers the task information into Eureka. At the same time, it regularly scans the task information in the registration center and sends task execution instructions to the task executor based on the task information.
  3. Task Executor: The task executor is the main component for executing tasks in the system. It is responsible for starting scheduled tasks, executing tasks, and recording task execution logs.
  4. Log center: The log center collects task execution logs generated by task executors and provides log query and log analysis functions.

2. System implementation

  1. Implementation of task management center

The task management center is developed using the SpringBoot framework and Thymeleaf. Page rendering. In the task management center, we can add, delete, modify, deactivate, and enable scheduled tasks. On the page, we display the basic information of the scheduled task and the scheduling rules of the task.

  1. Implementation of scheduled task service

In the implementation of scheduled task service, we mainly use SpringCloud components such as Eureka, Ribbon, Feign, and Config. We use Eureka as the registration center, the scheduled task service accesses the task executor through Ribbon, uses Feign to make calls between services, and uses Config to implement the configuration center function.

Specifically, we put each task that needs to be scheduled into a Map and register it in Eureka. Every once in a while, the scheduled task service accesses the task executor through Ribbon load balancing and sends task execution instructions to the task executor. If the task execution fails, the task execution log is recorded and sent to the log center.

  1. Implementation of task executor

The task executor uses Quartz to implement scheduled task scheduling, and uses Feign to accept task execution instructions sent by the scheduled task service. During the task execution process, we store the task execution status, execution log and other information in the database for subsequent query and analysis.

  1. Implementation of log center

The log center is implemented using the ELK architecture, including three components: Elasticsearch, Logstash and Kibana. Among them, Elasticsearch is used to store logs, Logstash is used to send logs from task executors to Elasticsearch, and Kibana is used to display and query log information.

3. System Optimization

In actual use, we also need to optimize the system to ensure the stability and availability of the system. Some common optimization measures are listed below:

  1. Load balancing: For the task executor service, we need to use load balancing to avoid single points of failure and ensure system availability.
  2. Automatic task recovery: When the task executor service stops abnormally, we need to automatically restore the task to the system through the program to avoid task loss.
  3. Distributed lock: When a task is executed, distributed lock processing needs to be performed on the task to avoid repeated execution of the same task multiple times.
  4. Asynchronous execution: For some tasks that take a long time, we can use asynchronous execution to put the tasks in the message queue to improve the execution efficiency and reliability of the tasks.

4. Summary

Compared with the traditional stand-alone task scheduling system, the distributed task scheduling system based on Spring Cloud has higher concurrency and better scalability. , better fault tolerance and other advantages. At the same time, it is also an effective choice for enterprises to implement task scheduling. This article introduces the architectural design and implementation process of a distributed task scheduling system based on Spring Cloud, and also discusses some system optimization measures. I believe it will be of some help to everyone.

The above is the detailed content of Distributed task scheduling system based on Spring Cloud. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
PHP实现开源SeaweedFS分布式文件系统PHP实现开源SeaweedFS分布式文件系统Jun 18, 2023 pm 03:56 PM

在分布式系统的架构中,文件管理和存储是非常重要的一部分。然而,传统的文件系统在应对大规模的文件存储和管理时遇到了一些问题。为了解决这些问题,SeaweedFS分布式文件系统被开发出来。在本文中,我们将介绍如何使用PHP来实现开源SeaweedFS分布式文件系统。什么是SeaweedFS?SeaweedFS是一个开源的分布式文件系统,它用于解决大规模文件存储和

Pandas 与 PySpark 强强联手,功能与速度齐飞!Pandas 与 PySpark 强强联手,功能与速度齐飞!May 01, 2023 pm 09:19 PM

​使用Python做数据处理的数据科学家或数据从业者,对数据科学包pandas并不陌生,也不乏像云朵君一样的pandas重度使用者,项目开始写的第一行代码,大多是importpandasaspd。pandas做数据处理可以说是yyds!而他的缺点也是非常明显,pandas只能单机处理,它不能随数据量线性伸缩。例如,如果pandas试图读取的数据集大于一台机器的可用内存,则会因内存不足而失败。另外​pandas在处理大型​数据方面非常慢,虽然有像Dask或Vaex等其他库来优化提升数

PHP中的分布式数据中心PHP中的分布式数据中心May 23, 2023 pm 11:40 PM

随着互联网的快速发展,网站的访问量也在不断增长。为了满足这一需求,我们需要构建高可用性的系统。分布式数据中心就是这样一个系统,它将各个数据中心的负载分散到不同的服务器上,增加系统的稳定性和可扩展性。在PHP开发中,我们也可以通过一些技术实现分布式数据中心。分布式缓存分布式缓存是互联网分布式应用中最常用的技术之一。它将数据缓存在多个节点上,提高数据的访问速度和

使用Redis实现分布式计数器使用Redis实现分布式计数器May 11, 2023 am 08:06 AM

什么是分布式计数器?在分布式系统中,多个节点之间需要对共同的状态进行更新和读取,而计数器是其中一种应用最广泛的状态之一。通俗地讲,计数器就是一个变量,每次被访问时其值就会加1或减1,用于跟踪某个系统进展的指标。而分布式计数器则指的是在分布式环境下对计数器进行操作和管理。为什么要使用Redis实现分布式计数器?随着分布式计算的普及,分布式系统中的许多细节问题也

分布式系统必须知道的一个共识算法:Raft分布式系统必须知道的一个共识算法:RaftApr 07, 2023 pm 05:54 PM

一、Raft 概述​​Raft 算法​​​是分布式系统开发首选的​​共识算法​​。比如现在流行 Etcd、Consul。如果​​掌握​​​了这个算法,就可以较容易地处理绝大部分场景的​​容错​​​和​​一致性​​需求。比如分布式配置系统、分布式 NoSQL 存储等等,轻松突破系统的单机限制。Raft 算法是通过一切以领导者为准的方式,实现一系列值的共识和各节点日志的一致。二、Raft 角色2.1 角色跟随者(Follower):​​普通群众​​,默默接收和来自领导者的消息,当领导者心跳信息超时的

Redis实现分布式配置管理的方法与应用实例Redis实现分布式配置管理的方法与应用实例May 11, 2023 pm 04:22 PM

Redis实现分布式配置管理的方法与应用实例随着业务的发展,配置管理对于一个系统而言变得越来越重要。一些通用的应用配置(如数据库连接信息,缓存配置等),以及一些需要动态控制的开关配置,都需要进行统一管理和更新。在传统架构中,通常是通过在每台服务器上通过单独的配置文件进行管理,但这种方式会导致配置文件的管理和同步变得十分复杂。因此,在分布式架构下,采用一个可靠

Redis实现分布式对象存储的方法与应用实例Redis实现分布式对象存储的方法与应用实例May 10, 2023 pm 08:48 PM

Redis实现分布式对象存储的方法与应用实例随着互联网的快速发展和数据量的快速增长,传统的单机存储已经无法满足业务的需求,因此分布式存储成为了当前业界的热门话题。Redis是一个高性能的键值对数据库,它不仅支持丰富的数据结构,而且支持分布式存储,因此具有极高的应用价值。本文将介绍Redis实现分布式对象存储的方法,并结合应用实例进行说明。一、Redis实现分

PHP与数据库分布式的集成PHP与数据库分布式的集成May 15, 2023 pm 09:40 PM

随着互联网技术的发展,对于一个网络应用而言,对数据库的操作非常频繁。特别是对于动态网站,甚至有可能出现每秒数百次的数据库请求,当数据库处理能力不能满足需求时,我们可以考虑使用数据库分布式。而分布式数据库的实现离不开与编程语言的集成。PHP作为一门非常流行的编程语言,具有较好的适用性和灵活性,这篇文章将着重介绍PHP与数据库分布式集成的实践。分布式的概念分布式

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)