


In modern software development, data visualization and reporting functions are receiving more and more attention, because they can help users better understand and analyze data, and help enterprises better manage their business and make decisions. In this article, we will introduce how to use the Gin framework to implement data visualization and reporting functions to help readers better learn and apply this technology.
The Gin framework is a lightweight Web framework based on the Go language and has the characteristics of high performance and simplicity of use. Its design concept is to provide a set of basic tools (routing, middleware, rendering) to meet the basic needs of web development, and can be easily extended and customized. Therefore, efficient, scalable and easy-to-maintain web applications can be quickly developed using the Gin framework.
The data visualization and reporting functions introduced in this article are based on the RESTful API provided by the Gin framework and the front-end framework provided by Vue.js. Vue.js is a popular JavaScript framework that supports data-driven component development, making it easier to develop complex front-end applications. At the same time, Vue.js also provides a wealth of plug-ins and components to implement data visualization and reporting functions, such as plug-ins such as ECharts and DataTables.
First, we need to create a web application based on the Gin framework and define some RESTful APIs to handle data requests. In this example, we assume that we need to display some sales data, including sales, order volume, product categories, etc. We can define the following API:
- GET /api/sales: Returns a list of all sales data.
- GET /api/sales/:id: Returns the details of a specific sales data.
- POST /api/sales: Create a new sales data.
- PUT /api/sales/:id: Update information for a specific sales data.
- DELETE /api/sales/:id: Delete a specific sales data.
It is very simple to define API in the Gin framework. You only need to use the corresponding HTTP method and path, and bind the corresponding processing function. For example:
func main() { r := gin.Default() r.GET("/api/sales", getSales) r.GET("/api/sales/:id", getSale) r.POST("/api/sales", createSale) r.PUT("/api/sales/:id", updateSale) r.DELETE("/api/sales/:id", deleteSale) r.Run() } func getSales(c *gin.Context) { // TODO: 返回所有销售数据的列表。 } func getSale(c *gin.Context) { id := c.Param("id") // TODO: 返回某个特定销售数据的详细信息。 } func createSale(c *gin.Context) { // TODO: 创建一条新的销售数据。 } func updateSale(c *gin.Context) { id := c.Param("id") // TODO: 更新某个特定销售数据的信息。 } func deleteSale(c *gin.Context) { id := c.Param("id") // TODO: 删除某个特定销售数据。 }
Next, we need to use Vue.js to create a front-end application, and use plug-ins such as ECharts and DataTables to implement data visualization and reporting functions. First, we need to use Vue.js to create a simple page, including a table and some charts, to display sales data. For example:
<template> <div> <div> <table id="sales-table"></table> </div> <div> <div id="sales-chart1"></div> <div id="sales-chart2"></div> </div> </div> </template> <script> import $ from 'jquery' import 'datatables.net-bs4' import echarts from 'echarts' export default { name: 'SalesPage', data () { return { sales: [] } }, mounted () { this.loadSales() }, methods: { loadSales () { $.ajax({ url: '/api/sales', type: 'GET', success: (data) => { this.sales = data this.renderTable() this.renderCharts() } }) }, renderTable () { $('#sales-table').DataTable({ data: this.sales, columns: [ { title: 'ID', data: 'id' }, { title: 'Amount', data: 'amount' }, { title: 'Quantity', data: 'quantity' }, { title: 'Product', data: 'product' }, { title: 'Category', data: 'category' } ] }) }, renderCharts () { const chart1 = echarts.init(document.getElementById('sales-chart1')) const chart2 = echarts.init(document.getElementById('sales-chart2')) // TODO: 渲染图表数据。 } } } </script>
In this page, we use DataTables to display sales data in a table, and ECharts to display sales data in the form of charts. We called GET /api/sales once in the loadSales method to load the sales data, and passed the sales data to the renderTable and renderCharts methods to use DataTables and ECharts to render the data. In the renderTables method, we use jQuery's DataTable plugin to render the tables, and in the renderCharts method, we use ECharts to render the charts.
Next, we need to implement the processing function defined in the RESTful API to handle data requests. In this example, we can use SQLite as the database and Gorm as the ORM framework to operate the database. At the same time, we also need to use some plug-ins to help us with data processing and verification, such as gommon/validation and other plug-ins. For example:
import ( "github.com/gin-gonic/gin" "github.com/jinzhu/gorm" _ "github.com/mattn/go-sqlite3" "github.com/wbsnail/articles/GinDataVisualization/internal/sales" "gopkg.in/go-playground/validator.v9" ) type SaleInput struct { Amount float64 `json:"amount" validate:"required"` Quantity int `json:"quantity" validate:"required"` Product string `json:"product" validate:"required"` Category string `json:"category" validate:"required"` } func main() { db, err := gorm.Open("sqlite3", "sales.db") if err != nil { panic("failed to connect database") } defer db.Close() db.AutoMigrate(&sales.Sale{}) r := gin.Default() r.GET("/api/sales", getSales) r.GET("/api/sales/:id", getSale) r.POST("/api/sales", createSale) r.PUT("/api/sales/:id", updateSale) r.DELETE("/api/sales/:id", deleteSale) r.Run() } func getSales(c *gin.Context) { db := c.MustGet("db").(*gorm.DB) var sales []sales.Sale db.Find(&sales) c.JSON(http.StatusOK, sales) } func getSale(c *gin.Context) { db := c.MustGet("db").(*gorm.DB) var sale sales.Sale if err := db.Where("id = ?", c.Param("id")).First(&sale).Error; err != nil { c.AbortWithStatus(http.StatusNotFound) } else { c.JSON(http.StatusOK, sale) } } func createSale(c *gin.Context) { db := c.MustGet("db").(*gorm.DB) var input SaleInput if err := c.ShouldBindJSON(&input); err != nil { c.AbortWithStatus(http.StatusBadRequest) } else if err := validate.Struct(input); err != nil { c.AbortWithStatus(http.StatusBadRequest) } else { sale := sales.Sale{Amount: input.Amount, Quantity: input.Quantity, Product: input.Product, Category: input.Category} db.Create(&sale) c.JSON(http.StatusOK, sale) } } func updateSale(c *gin.Context) { db := c.MustGet("db").(*gorm.DB) var input SaleInput if err := c.ShouldBindJSON(&input); err != nil { c.AbortWithStatus(http.StatusBadRequest) } else if err := validate.Struct(input); err != nil { c.AbortWithStatus(http.StatusBadRequest) } else { var sale sales.Sale if err := db.Where("id = ?", c.Param("id")).First(&sale).Error; err != nil { c.AbortWithStatus(http.StatusNotFound) } else { sale.Amount = input.Amount sale.Quantity = input.Quantity sale.Product = input.Product sale.Category = input.Category db.Save(&sale) c.JSON(http.StatusOK, sale) } } } func deleteSale(c *gin.Context) { db := c.MustGet("db").(*gorm.DB) var sale sales.Sale if err := db.Where("id = ?", c.Param("id")).First(&sale).Error; err != nil { c.AbortWithStatus(http.StatusNotFound) } else { db.Delete(&sale) c.Status(http.StatusOK) } }
In this example, we define a SaleInput structure to represent the input format of sales data, and use validate to verify the legality of the input data. In the createSale and updateSale methods, we convert the input data into a Sale structure and use db.Create and db.Save to create or update sales data. In the getSales, getSale and deleteSale methods, we use db.Find, db.Where and db.Delete to query and delete sales data. In all processing functions, we use db := c.MustGet("db").(*gorm.DB) to obtain the database connection object. This is because we have already registered one when creating the application. Middleware to establish a database connection and store the connection object in c.Keys["db"], so that we can use the connection object in each request processing function.
Finally, we need to bind the Web page and the RESTful API through the Gin framework, so that users can access and operate data by accessing the Web page. In this example, we can use the HTML render (or JSON render) middleware provided by the Gin framework to bind the web page and the RESTful API. For example:
func main() { db, err := gorm.Open("sqlite3", "sales.db") if err != nil { panic("failed to connect database") } defer db.Close() db.AutoMigrate(&sales.Sale{}) r := gin.Default() r.Use(func(c *gin.Context) { c.Set("db", db) c.Next() }) r.GET("/", func(c *gin.Context) { c.HTML(http.StatusOK, "index.html", nil) }) r.GET("/api/sales", getSales) r.GET("/api/sales/:id", getSale) r.POST("/api/sales", createSale) r.PUT("/api/sales/:id", updateSale) r.DELETE("/api/sales/:id", deleteSale) r.Run() }
In this example, we registered a middleware to store the database connection object into c.Keys["db"], and then bound a GET/request using the HTML render middleware software to render the index.html page. In this way, we can access the Web page by accessing http://localhost:8080.
In summary, using the Gin framework to implement data visualization and reporting functions is a very practical and useful technology. It can help us better understand and analyze business data and help us make better decisions. , and improve the management efficiency of enterprises. Through the study and practice of this article, we can better master this technology and apply it to actual development.
The above is the detailed content of Use Gin framework to implement data visualization and reporting functions. For more information, please follow other related articles on the PHP Chinese website!

大家好,我是啃书君!正所谓:有朋自远方来,不亦乐乎?有朋友来找我们玩,是一件很快乐的事情,那么我们要尽地主之谊,好好带朋友去玩耍!那么问题来了,什么时候去哪里玩最好呢,哪里玩的地方最多呢?今天将手把手教你使用线程池爬取同程旅行的景点信息及评论数据并做词云、数据可视化!!!带你了解各个城市的游玩景点信息。在开始爬取数据之前,我们首先来了解一下线程。线程进程:进程是代码在数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位。线程:是轻量级的进程,是程序执行的最小单元,是进程的一个执行路径。一

1、TransBigData简介TransBigData为处理常见的交通时空大数据(如出租车GPS数据、共享单车数据和公交车GPS数据等)提供了快速而简洁的方法。TransBigData为交通时空大数据分析的各个阶段提供了多种处理方法,代码简洁、高效、灵活、易用,可以用简洁的代码实现复杂的数据任务。目前,TransBigData主要提供以下方法: 数据预处理:对数据集提供快速计算数据量、时间段、采样间隔等基本信息的方法,也针对多种数据噪声提供了相应的清洗方法。 数据栅格化:提供在研究区域内生成、

随着互联网的不断发展,大量的数据被生成并存储在各种网络应用程序和系统中,尤其是像电子商务、社交网络、金融和制造业等领域。为了从这些数据中汲取更多的信息,数据可视化已成为一种流行的方法。通过将数据转换为图形形式,用户可以更加容易地理解和分析数据。在本文中,我们将介绍如何使用PHP和Chart.js来创建多图表数据可视化应用程序。什么是Chart.js?Char

随着大数据时代的到来,数据可视化分析在各行各业中扮演着至关重要的角色。而Go语言作为一种快速、高效、安全的编程语言,也逐渐在数据可视化分析领域占据一席之地。本文将探讨如何使用Go语言进行数据可视化分析。一、Go语言常用的数据可视化库Plotly:可用于在浏览器中创建交互式的图形,支持多种图形类型,如线图、条形图、散点图、热力图等。Gonum/plo

在我们使用高德地图的时候,官方给我们推荐了很多案例,demo,但是这些案例都是使用原生方法接入,并没有提供vue或者react 的demo,vue2的 接入网上也很多人都有写过,下面本篇文章就来看看 vue3怎么使用常用的高德地图api,希望对大家有所帮助!

近年来,随着数据的爆炸性增长和互联网技术的不断发展,数据可视化成为越来越受关注的领域。数据可视化是将数据转化为易于理解和分析的图形化形式,帮助人们更快速和准确地理解数据。而基于Java的数据可视化工具和应用则成为了当前比较热门的技术。Java的数据可视化工具和应用优势应用范围广Java语言有很强的跨平台性,可以在不同操作系统上安装和运行,而且可以通过Java

近年来,数据可视化相关技术的快速发展,使得复杂数据更易于被理解和分析。Vue作为一种流行的前端框架,具有良好的可扩展性和易用性,被广泛应用于数据可视化领域。本文将介绍Vue中实现柱状图、饼图等数据可视化的技巧。一、使用ECharts实现柱状图ECharts是一款基于JavaScript的开源可视化库,提供了多种图表类型,其中包括柱状图。下面以

随着互联网时代的到来,数据已经成为了我们生活和工作中必不可少的一部分。在处理和分析数据的过程中,数据可视化已经成为了一种非常流行的技术。数据可视化可以让我们更好地理解数据,发现数据中的规律和趋势,同时更好地向别人展示数据分析结果。在本文中,我们将会介绍如何在PHP中使用D3.js创建漂亮的数据可视化。一、什么是D3.jsD3.js(Data-DrivenD


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version
SublimeText3 Linux latest version
