search
HomeBackend DevelopmentGolangReal-time stream processing using Kafka and Flink in Beego

With the advent of the big data era, we often need to process and analyze real-time data. Real-time stream processing technology has become a mainstream method for processing large-scale real-time data due to its high performance, high scalability and low latency. In real-time stream processing technology, Kafka and Flink are common components and have been widely used in many enterprise-level data processing systems. In this article, we will introduce how to use Kafka and Flink in Beego for real-time stream processing.

1. Introduction to Kafka

Apache Kafka is a distributed stream processing platform. It provides high performance, high availability, high scalability and some advanced features, such as Exactly-Once guarantee, by decoupling data into a stream (streaming data) and distributing the data across multiple nodes. The main role of Kafka is as a reliable messaging system that can be used to solve communication problems between multiple components in distributed systems and reliable transmission of messages.

2. Introduction to Flink

Flink is an event-driven, distributed, high-performance big data stream processing framework. It supports stream and batch processing, has SQL-like query and stream processing capabilities, supports highly composable streaming computing, and has rich window and data storage support.

3. Kafka in Beego

Using Kafka in Beego is mainly divided into two parts, namely Kafka consumer and Kafka producer.

  1. Kafka producer

Using Kafka producers in Beego can easily send data to the Kafka cluster. Here is how to use Kafka producers in Beego Example:

import (
    "github.com/Shopify/sarama"
)

func main() {
    // 创建 kafka 生产者
    producer, err := sarama.NewSyncProducer([]string{"localhost:9092"}, nil)

    if err != nil {
        // 处理错误情况
        panic(err)
    }

    // 创建 Kafka 消息
    msg := &sarama.ProducerMessage{
        Topic: "test",
        Value: sarama.StringEncoder("Hello, World!"),
    }

    // 发送消息
    partition, offset, err := producer.SendMessage(msg)

    if err != nil {
        // 处理错误情况
        panic(err)
    }

    fmt.Printf("消息已发送到分区 %d 的偏移量 %d 中
", partition, offset)

    // 关闭 Kafka 生产者
    producer.Close()
}
  1. Kafka Consumer

Using Kafka consumers in Beego can easily obtain data from the Kafka cluster. Here is how to use it in Beego Example of Kafka consumer:

import (
    "github.com/Shopify/sarama"
)

func main() {
    // 创建 kafka 消费者
    consumer, err := sarama.NewConsumer([]string{"localhost:9092"}, nil)

    if err != nil {
        // 处理错误情况
        panic(err)
    }

    // 订阅 Topic
    partitions, err := consumer.Partitions("test")

    if err != nil {
        // 处理错误情况
        panic(err)
    }

    for _, partition := range partitions {
        // 从分区的开头读取数据
        partitionConsumer, _ := consumer.ConsumePartition("test", partition, sarama.OffsetOldest)

        // 处理数据
        go func(partitionConsumer sarama.PartitionConsumer) {
            for {
                select {
                case msg := <-partitionConsumer.Messages():
                    // 处理消息
                    fmt.Printf("收到消息: %v", string(msg.Value))
                }
            }
        }(partitionConsumer)
    }

    // 关闭 Kafka 消费者
    defer consumer.Close()
}

4. Flink in Beego

Using Flink in Beego can be done directly through Flink’s Java API, through the Cgo interaction between Java and Go Complete the entire process. Below is a simple example from Flink where the frequency of each Socket text word is calculated via real-time stream processing. In this example, we read the given text data stream into Flink, then use Flink's operators to operate on the data stream, and finally output the results to the console.

  1. Create a Socket text data source
import org.apache.flink.streaming.api.functions.source.SourceFunction;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.Socket;

public class SocketTextStreamFunction implements SourceFunction<String> {
    private final String hostname;
    private final int port;

    public SocketTextStreamFunction(String hostname, int port) {
        this.hostname = hostname;
        this.port = port;
    }

    public void run(SourceContext<String> context) throws Exception {
        Socket socket = new Socket(hostname, port);
        BufferedReader reader = new BufferedReader(new InputStreamReader(socket.getInputStream()));
        String line;
        while ((line = reader.readLine()) != null) {
            context.collect(line);
        }
        reader.close();
        socket.close();
    }

    public void cancel() {}
}
  1. Calculate the frequency of each word
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

public class SocketTextStreamWordCount {
    public static void main(String[] args) throws Exception {
        String hostname = "localhost";
        int port = 9999;

        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 从 Socket 中读取数据流
        DataStream<String> text = env.addSource(new SocketTextStreamFunction(hostname, port));

        // 计算每个单词的出现频率
        DataStream<Tuple2<String, Integer>> wordCounts = text
                .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
                    public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
                        String[] words = value.toLowerCase().split("\W+");
                        for (String word : words) {
                            out.collect(new Tuple2<String, Integer>(word, 1));
                        }
                    }
                })
                .keyBy(0)
                .timeWindow(Time.seconds(5))
                .apply(new WindowFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple, TimeWindow>() {
                    public void apply(Tuple key, TimeWindow window, Iterable<Tuple2<String, Integer>> input, Collector<Tuple2<String, Integer>> out) throws Exception {
                        int sum = 0;
                        for (Tuple2<String, Integer> t : input) {
                            sum += t.f1;
                        }
                        out.collect(new Tuple2<String, Integer>((String) key.getField(0), sum));
                    }
                });

        // 打印到控制台
        wordCounts.print();

        env.execute("Socket Text Stream Word Count");
    }
}

5. Conclusion

This article introduces how to use Kafka and Flink in Beego for real-time stream processing. Kafka can be used as a reliable messaging system to solve communication problems between multiple components in distributed systems and reliable transmission of messages. Flink is an event-driven, distributed, high-performance big data stream processing framework. In practical applications, we can flexibly choose to use technologies such as Kafka and Flink based on specific needs to solve challenges in large-scale real-time data processing.

The above is the detailed content of Real-time stream processing using Kafka and Flink in Beego. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Golang vs. Python: The Pros and ConsGolang vs. Python: The Pros and ConsApr 21, 2025 am 12:17 AM

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t

Golang and C  : Concurrency vs. Raw SpeedGolang and C : Concurrency vs. Raw SpeedApr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Why Use Golang? Benefits and Advantages ExplainedWhy Use Golang? Benefits and Advantages ExplainedApr 21, 2025 am 12:15 AM

Reasons for choosing Golang include: 1) high concurrency performance, 2) static type system, 3) garbage collection mechanism, 4) rich standard libraries and ecosystems, which make it an ideal choice for developing efficient and reliable software.

Golang vs. C  : Performance and Speed ComparisonGolang vs. C : Performance and Speed ComparisonApr 21, 2025 am 12:13 AM

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Is Golang Faster Than C  ? Exploring the LimitsIs Golang Faster Than C ? Exploring the LimitsApr 20, 2025 am 12:19 AM

Golang performs better in compilation time and concurrent processing, while C has more advantages in running speed and memory management. 1.Golang has fast compilation speed and is suitable for rapid development. 2.C runs fast and is suitable for performance-critical applications. 3. Golang is simple and efficient in concurrent processing, suitable for concurrent programming. 4.C Manual memory management provides higher performance, but increases development complexity.

Golang: From Web Services to System ProgrammingGolang: From Web Services to System ProgrammingApr 20, 2025 am 12:18 AM

Golang's application in web services and system programming is mainly reflected in its simplicity, efficiency and concurrency. 1) In web services, Golang supports the creation of high-performance web applications and APIs through powerful HTTP libraries and concurrent processing capabilities. 2) In system programming, Golang uses features close to hardware and compatibility with C language to be suitable for operating system development and embedded systems.

Golang vs. C  : Benchmarks and Real-World PerformanceGolang vs. C : Benchmarks and Real-World PerformanceApr 20, 2025 am 12:18 AM

Golang and C have their own advantages and disadvantages in performance comparison: 1. Golang is suitable for high concurrency and rapid development, but garbage collection may affect performance; 2.C provides higher performance and hardware control, but has high development complexity. When making a choice, you need to consider project requirements and team skills in a comprehensive way.

Golang vs. Python: A Comparative AnalysisGolang vs. Python: A Comparative AnalysisApr 20, 2025 am 12:17 AM

Golang is suitable for high-performance and concurrent programming scenarios, while Python is suitable for rapid development and data processing. 1.Golang emphasizes simplicity and efficiency, and is suitable for back-end services and microservices. 2. Python is known for its concise syntax and rich libraries, suitable for data science and machine learning.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.