Druid is an open source distributed data storage technology for real-time data analysis. It has the characteristics of high performance, low latency, and scalability. In order to further improve the performance and reliability of Druid, the Druid development team developed caching technology. This article mainly introduces the relevant knowledge of Druid caching.
1. Druid cache overview
Druid cache is divided into two types: one is the result cache on the Broker, and the other is the data cache on the Historical node. The role of caching is mainly to reduce the time it takes Druid to query data and reduce the query load.
- Result cache on Broker
The result cache on Broker is the cache of query results. Once the results are cached, subsequent queries can be directly retrieved from the cache. Obtain. The result cache is stored on the Broker's local disk, and the query result lifecycle is configurable and is 5 minutes by default. Query caching is generally used in scenarios that require high query response speed.
- Data cache on Historical node
The data cache on Historical node is a cache of data blocks. The Historical node is responsible for storing data blocks. When the Historical node receives a query request, if the queried data block is already in the local cache, the Historical node reads the data block directly from the cache and returns the result. If the data block is not in the cache, the Historical node needs to obtain the data block from other nodes in the cluster or data source and cache it. Data caching is one of the most important features of Druid, and can greatly improve query performance and response speed in many scenarios.
2. How to use Druid cache
You need to pay attention to the following points when using cache in Druid:
- Enable caching in queries
Druid does not enable caching by default, and you need to explicitly specify the cache when querying. When querying, you can enable result caching or data block caching by setting corresponding parameters. The query parameters are as follows:
(1) useResultCache: set to true to enable result caching, the default is false;
(2) useCache: set to true to enable data block caching, the default is false .
- Configuring cache
Druid’s cache is configurable, and users can set the size, life cycle and other parameters of the cache according to their actual needs. The parameters of the cache configuration are as follows:
(1) QueryCacheSize: The maximum size of the result cache, the default value is 500MB;
(2) segmentQueryCacheSize: The maximum size of the data block cache, the default is 0;
(3) resultCacheMaxSizeBytes: The maximum size of a single query result cache, the default is 10485760 bytes (10MB);
(4) resultCacheExpire: The life cycle of the query result cache, the default is 5 minutes.
3. Cache optimization
The optimization of Druid cache mainly includes the following points:
- Cache clearing strategy
When caching When the maximum capacity is reached or certain conditions are met, part of the cache needs to be cleared. By default, Druid cache clears some expired caches to free up more space. In addition, users can define their own clearing strategies and implement corresponding interfaces.
- Reasonably set the cache size
The setting of the cache size directly affects the storage capacity and efficiency of the cache. If the cache size is set too small, the cache will not be able to store enough data blocks or query results, thus affecting the performance of Druid queries; if the cache size is set too large, too many memory resources will be occupied, resulting in reduced query performance. Therefore, it needs to be adjusted according to the actual scenario to achieve optimal performance.
- Reasonably set the cache life cycle
If the cache life cycle is set too long, the memory resources occupied by the cache will not be released for a long time, affecting the performance of Druid queries; cache life cycle If it is too short, the cache hit rate will be reduced, which will also affect the performance of Druid queries. Therefore, the cache life cycle needs to be adjusted according to actual scenarios to achieve optimal performance.
Summary:
Druid caching is an important way to optimize Druid query performance. Result caching and data block caching each have different advantages and disadvantages, and users need to choose the appropriate caching method based on specific scenarios. When using Druid cache, you need to pay attention to cache enablement and configuration, and adjust and optimize it according to actual scenarios.
The above is the detailed content of Learn about Druid caching technology. For more information, please follow other related articles on the PHP Chinese website!

Javaispopularforcross-platformdesktopapplicationsduetoits"WriteOnce,RunAnywhere"philosophy.1)ItusesbytecodethatrunsonanyJVM-equippedplatform.2)LibrarieslikeSwingandJavaFXhelpcreatenative-lookingUIs.3)Itsextensivestandardlibrarysupportscompr

Reasons for writing platform-specific code in Java include access to specific operating system features, interacting with specific hardware, and optimizing performance. 1) Use JNA or JNI to access the Windows registry; 2) Interact with Linux-specific hardware drivers through JNI; 3) Use Metal to optimize gaming performance on macOS through JNI. Nevertheless, writing platform-specific code can affect the portability of the code, increase complexity, and potentially pose performance overhead and security risks.

Java will further enhance platform independence through cloud-native applications, multi-platform deployment and cross-language interoperability. 1) Cloud native applications will use GraalVM and Quarkus to increase startup speed. 2) Java will be extended to embedded devices, mobile devices and quantum computers. 3) Through GraalVM, Java will seamlessly integrate with languages such as Python and JavaScript to enhance cross-language interoperability.

Java's strong typed system ensures platform independence through type safety, unified type conversion and polymorphism. 1) Type safety performs type checking at compile time to avoid runtime errors; 2) Unified type conversion rules are consistent across all platforms; 3) Polymorphism and interface mechanisms make the code behave consistently on different platforms.

JNI will destroy Java's platform independence. 1) JNI requires local libraries for a specific platform, 2) local code needs to be compiled and linked on the target platform, 3) Different versions of the operating system or JVM may require different local library versions, 4) local code may introduce security vulnerabilities or cause program crashes.

Emerging technologies pose both threats and enhancements to Java's platform independence. 1) Cloud computing and containerization technologies such as Docker enhance Java's platform independence, but need to be optimized to adapt to different cloud environments. 2) WebAssembly compiles Java code through GraalVM, extending its platform independence, but it needs to compete with other languages for performance.

Different JVM implementations can provide platform independence, but their performance is slightly different. 1. OracleHotSpot and OpenJDKJVM perform similarly in platform independence, but OpenJDK may require additional configuration. 2. IBMJ9JVM performs optimization on specific operating systems. 3. GraalVM supports multiple languages and requires additional configuration. 4. AzulZingJVM requires specific platform adjustments.

Platform independence reduces development costs and shortens development time by running the same set of code on multiple operating systems. Specifically, it is manifested as: 1. Reduce development time, only one set of code is required; 2. Reduce maintenance costs and unify the testing process; 3. Quick iteration and team collaboration to simplify the deployment process.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 Linux new version
SublimeText3 Linux latest version
