


Golang is a modern programming language that is very popular in the development of server-side applications. However, some server performance bottlenecks can cause server responses to slow down when processing requests. These bottlenecks may be related to processing large amounts of data, network latency, or other thread-related issues. In this article, we will explore how to use caching to speed up the response efficiency of your Golang server and provide some best practices and sample code.
- What is cache?
Cache is a mechanism for temporarily storing data that is used to reduce access to back-end memory or processors. When the same data is requested repeatedly, caching can effectively avoid unnecessary data requests and processing, thereby improving server performance. In Golang, we can use third-party libraries to implement caching.
- Types of cache
In Golang, we can use two types of cache: local cache and distributed cache.
2.1 Local cache
Local cache refers to the mechanism that stores cache in memory. This kind of caching is usually only suitable for single instance applications because if we use multiple instances, each instance will have its own cache. In fact, local caching is very easy to implement and only needs to use a map. Below, we will show how to use map to implement local caching.
var cache = map[string]interface{}{} // 定义一个 map 作为缓存 func Cache(key string, f func() interface{}) interface{} { if data, ok := cache[key]; ok { // 如果数据存在,则直接返回 return data } result := f() // 运行函数获取数据 cache[key] = result // 存储到缓存中 return result // 返回结果 }
In the above code, when we call the Cache
function to obtain data, if the data already exists in the cache, the data in the cache will be returned. Otherwise, we will call the provided function (i.e. f()
) to get the data and store it in the cache.
2.2 Distributed Cache
When we need to implement a multi-instance application, we need to use distributed cache. Distributed caching refers to a mechanism for storing cache on multiple servers, which can share cached data.
In Golang, we can use open source distributed caching systems such as Memcached and Redis. These systems provide cached methods for storing and retrieving data, and they are very reliable and scalable.
- Practice
We know that the most common cache usage scenario is to store data. Let’s take a look at how to use caching in Golang to optimize our server’s response time.
3.1 Store frequently used data
We can use cache to store our most commonly used data. For example, if we need to retrieve the same information from the database in every request, we can store this information in the cache to improve the response speed of the server. Here is an example of how to implement this:
func main() { db.InitDB() userInfo := FetchUserInfoFromDB("user-id-123") Cache("userInfo-user-id-123", func() interface{} { return userInfo }) } func users(w http.ResponseWriter, r *http.Request) { cacheData := Cache("userInfo-user-id-123", func() interface{} { return FindUserByID("user-id-123") }) response(w, r, http.StatusOK, cacheData) }
In the above code, we extract user information from the database and put it into the cache when the application is initialized. When the user sends a new request, we will read this data from the cache instead of re-requesting this data from the database. This will greatly improve the response time of our application.
3.2 Storing results
We can use cache to store processed results. For example, sometimes we need to handle some computationally intensive tasks that take a long time to complete. In this case, we can cache these results for use in the next identical request. The following is the sample code to implement this example:
func main() { db.InitDB() } func fibonacci(w http.ResponseWriter, r *http.Request) { num, err := strconv.Atoi(r.URL.Query().Get("num")) if err != nil { http.Error(w, "Invalid Num", http.StatusBadRequest) return } var res int cacheData := Cache(fmt.Sprintf("fibonacci-%d", num), func() interface{} { res = fib(num) return res }) response(w, r, http.StatusOK, cacheData) } func fib(n int) int { if n < 2 { return n } return fib(n-1) + fib(n-2) }
In the above code, we use cache to store the results of the Fibonacci sequence. When we receive a request, if the request parameters are in the cache, we will directly return the data in the cache. Otherwise, we calculate the result of the Fibonacci sequence and store the result in the cache.
- Summary
In Golang server applications, caching can greatly improve the response time of the application. In this article, we introduced two types of cache: local cache and distributed cache. Local caching can be used for single-instance applications, while distributed caching is suitable for multi-instance applications. We also provide some sample code that shows how caching can be used in Golang to optimize server response times.
The above is the detailed content of The practice of using cache to speed up server response efficiency in Golang.. For more information, please follow other related articles on the PHP Chinese website!

DHCP是“动态主机配置协议DynamicHostConfigurationProtocol”的首字母缩写词,它是一种网络协议,可自动为计算机网络中的客户端系统分配IP地址。它从DHCP池或在其配置中指定的IP地址范围分配客户端。虽然你可以手动为客户端系统分配静态IP,但DHCP服务器简化了这一过程,并为网络上的客户端系统动态分配IP地址。在本文中,我们将演示如何在RHEL9/RockyLinux9上安装和配置DHCP服务器。先决条件预装RHEL9或RockyLinux9具有sudo管理权限的普

一、安装nginx容器为了让nginx支持文件上传,需要下载并运行带有nginx-upload-module模块的容器:sudopodmanpulldocker.io/dimka2014/nginx-upload-with-progress-modules:latestsudopodman-d--namenginx-p83:80docker.io/dimka2014/nginx-upload-with-progress-modules该容器同时带有nginx-upload-module模块和ng

vue3项目打包发布到服务器后访问页面显示空白1、处理vue.config.js文件中的publicPath处理如下:const{defineConfig}=require('@vue/cli-service')module.exports=defineConfig({publicPath:process.env.NODE_ENV==='production'?'./':'/&

1,将java项目打成jar包这里我用到的是maven工具这里有两个项目,打包完成后一个为demo.jar,另一个为jst.jar2.准备工具1.服务器2.域名(注:经过备案)3.xshell用于连接服务器4.winscp(注:视图工具,用于传输jar)3.将jar包传入服务器直接拖动即可3.使用xshell运行jar包注:(服务器的java环境以及maven环境,各位请自行配置,这里不做描述。)cd到jar包路径下执行:nohupjava-jardemo.jar>temp.txt&

TCP客户端一个使用TCP协议实现可连续对话的客户端示例代码:importsocket#客户端配置HOST='localhost'PORT=12345#创建TCP套接字并连接服务器client_socket=socket.socket(socket.AF_INET,socket.SOCK_STREAM)client_socket.connect((HOST,PORT))whileTrue:#获取用户输入message=input("请输入要发送的消息:&

scp是securecopy的简写,是linux系统下基于ssh登陆进行安全的远程文件拷贝命令。scp是加密的,rcp是不加密的,scp是rcp的加强版。因为scp传输是加密的,可能会稍微影响一下速度。另外,scp还非常不占资源,不会提高多少系统负荷,在这一点上,rsync就远远不及它了。虽然rsync比scp会快一点,但当小文件众多的情况下,rsync会导致硬盘I/O非常高,而scp基本不影响系统正常使用。场景:假设我现在有两台服务器(这里的公网ip和内网ip相互传都可以,当然用内网ip相互传

psutil是一个跨平台的Python库,它允许你获取有关系统进程和系统资源使用情况的信息。它支持Windows、Linux、OSX、FreeBSD、OpenBSD和NetBSD等操作系统,并提供了一些非常有用的功能,如:获取系统CPU使用率、内存使用率、磁盘使用率等信息。获取进程列表、进程状态、进程CPU使用率、进程内存使用率、进程IO信息等。杀死进程、发送信号给进程、挂起进程、恢复进程等操作。使用psutil,可以很方便地监控系统的运行状况,诊断问题和优化性能。以下是一个简单的示例,演示如何

一、安装前的准备工作在进行MySQL多实例的安装前,需要进行以下准备工作:准备多个MySQL的安装包,可以从MySQL官网下载适合自己环境的版本进行下载:https://dev.mysql.com/downloads/准备多个MySQL数据目录,可以通过创建不同的目录来支持不同的MySQL实例,例如:/data/mysql1、/data/mysql2等。针对每个MySQL实例,配置一个独立的MySQL用户,该用户拥有对应的MySQL安装路径和数据目录的权限。二、基于二进制包安装多个MySQL实例


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Zend Studio 13.0.1
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

SublimeText3 Chinese version
Chinese version, very easy to use