How to configure sequence and deserialization of RedisTemplate in Redis
RedisTemplate configuration sequence and deserialization
Spring Data Redis provides excellent encapsulation to facilitate the use of Redis operations. A highly encapsulated RedisTemplate class is provided to perform a series of redis operations, and the connection pool is automatically managed; at the same time, the transaction encapsulation operation is handed over to the container for processing.
A variety of strategies (RedisSerializer) are provided for the "serialization and deserialization" of data
The default is to use JdkSerializationRedisSerializer, as well as StringRedisSerializer, JacksonJsonRedisSerializer, OxmSerializer, and GenericFastJsonRedisSerializer.
Introduction
JdkSerializationRedisSerializer: POJO object access scenario, using JDK's own serialization mechanism, serializes the pojo class through ObjectInputStream/ObjectOutputStream, and finally stores the words in redis-server section sequence. This is the current default serialization strategy.
StringRedisSerializer: When the Key or value is a string, the byte sequence of the data is encoded into a string according to the specified charset, which is "new String(bytes, charset)" and "string.getBytes(charset)" direct encapsulation. is the most lightweight and efficient strategy.
JacksonJsonRedisSerializer: The jackson-json tool provides conversion capabilities between javabean and json. It can serialize pojo instances into json format and store them in redis, or convert json format data into pojo instances. Because the Jackson tool needs to explicitly specify the Class type when serializing and deserializing, this strategy is slightly more complicated to encapsulate. [Requires jackson-mapper-asl tool support]
GenericFastJsonRedisSerializer: Another conversion between javabean and json, and the Class type also needs to be specified.
OxmSerializer: Provides the ability to convert javabeans to xml. Currently available three-party support includes jaxb, apache-xmlbeans; the data stored in redis will be xml tools. However, using this strategy will make programming more difficult and the most efficient; it is not recommended. [Requires spring-oxm module support]
Practice
1) Dependency (version inherits the SpringBoot version)
<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency>
2) RedisConfig class
Add beans, specify key/value and the serialization and deserialization of HashKey and HashValue into FastJson.
package com.sleb.springcloud.common.config; import com.alibaba.fastjson.support.spring.GenericFastJsonRedisSerializer; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.data.redis.connection.RedisConnectionFactory; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.data.redis.serializer.GenericToStringSerializer; /** * redis配置 * @author 追到乌云的尽头找太阳(Jacob) **/ @Configuration public class RedisConfig { @Bean public RedisTemplate<Object, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) { RedisTemplate<Object, Object> redisTemplate = new RedisTemplate<>(); redisTemplate.setConnectionFactory(redisConnectionFactory); // 使用 GenericFastJsonRedisSerializer 替换默认序列化 GenericFastJsonRedisSerializer genericFastJsonRedisSerializer = new GenericFastJsonRedisSerializer(); // 设置key和value的序列化规则 redisTemplate.setKeySerializer(new GenericToStringSerializer<>(Object.class)); redisTemplate.setValueSerializer(genericFastJsonRedisSerializer); // 设置hashKey和hashValue的序列化规则 redisTemplate.setHashKeySerializer(new GenericToStringSerializer<>(Object.class)); redisTemplate.setHashValueSerializer(genericFastJsonRedisSerializer); // 设置支持事物 redisTemplate.setEnableTransactionSupport(true); redisTemplate.afterPropertiesSet(); return redisTemplate; } }
RedisTemplate serialization problem
Serialization and deserialization rules are inconsistent, resulting in error reporting
1. Configure redisTemplate
<!-- redis数据源 --> <bean id="poolConfig" class="redis.clients.jedis.JedisPoolConfig"> <!-- 最大空闲数 --> <property name="maxIdle" value="${redis.maxIdle}"/> <!-- 最大空连接数 --> <property name="maxTotal" value="${redis.maxTotal}"/> <!-- 最大等待时间 --> <property name="maxWaitMillis" value="${redis.maxWaitMillis}"/> <!-- 返回连接时,检测连接是否成功 --> <property name="testOnBorrow" value="${redis.testOnBorrow}"/> </bean> <!-- Spring-data-redis连接池管理工厂 --> <bean id="jedisConnectionFactory" class="org.springframework.data.redis.connection.jedis.JedisConnectionFactory"> <!-- IP地址 --> <property name="hostName" value="${redis.host}"/> <!-- 端口号 --> <property name="port" value="${redis.port}"/> <!-- 密码 --> <!-- <property name="password" value="${redis.password}"/>--> <!-- 超时时间 默认2000 --> <property name="timeout" value="${redis.timeout}"/> <!-- 连接池配置引用 --> <property name="poolConfig" ref="poolConfig"/> <!-- 是否使用连接池 --> <property name="usePool" value="true"/> <!-- 指定使用的数据库 --> <property name="database" value="0"/> </bean> <!-- redis template definition --> <bean id="redisTemplate" class="org.springframework.data.redis.core.RedisTemplate"> <property name="connectionFactory" ref="jedisConnectionFactory"/> <property name="keySerializer"> <bean class="org.springframework.data.redis.serializer.StringRedisSerializer"/> </property> <property name="valueSerializer"> <bean class="org.springframework.data.redis.serializer.JdkSerializationRedisSerializer"/> </property> <property name="hashKeySerializer"> <bean class="org.springframework.data.redis.serializer.StringRedisSerializer"/> </property> <property name="hashValueSerializer"> <bean class="org.springframework.data.redis.serializer.JdkSerializationRedisSerializer"/> </property> </bean>
2. Store value
This time the value is stored, the callback function of redisTemplate is used to store redisValue according to the string serialization method
public void testRedisListPush() { String redisKey = "testGoodsKey"; List<String> redisValues = Arrays.asList("10002001", "10002002"); // 使用管道向redis list结构中批量插入元素 redisTemplate.executePipelined((RedisConnection redisConnection) -> { // 打开管道 redisConnection.openPipeline(); // 给本次管道内添加,一次性执行的多条命令 for (String redisValue : redisValues) { redisConnection.rPush(redisKey.getBytes(), redisValue.getBytes()); } return null; }); }
redis client: value is a string
3. Value
This time, the returned result defaults to the JdkSerializationRedisSerializer serialization method configured in 1. Configure redisTemplate. Since the serialization methods of storage and retrieval are not uniform, there will be An error condition occurs.
public void testRedisListPop() { String redisKey = "testGoodsKey"; // 使用管道从redis list结构中批量获取元素 List<Object> objects = redisTemplate.executePipelined((RedisConnection redisConnection) -> { // 打开管道 redisConnection.openPipeline(); for (int i = 0; i < 2; i++) { redisConnection.rPop(redisKey.getBytes()); } return null; }); System.out.println(objects); }
Error report details: Deserialization failed
org.springframework.data.redis.serializer.SerializationException: Cannot deserialize; nested exception is org.springframework.core. serializer.support.SerializationFailedException: Failed to deserialize payload. Is the byte array a result of corresponding serialization for DefaultDeserializer?; nested exception is java.io.StreamCorruptedException: invalid stream header: 31303030
...
Caused by: org.springframework.core.serializer.support.SerializationFailedException: Failed to deserialize payload. Is the byte array a result of corresponding serialization for DefaultDeserializer?; nested exception is java.io.StreamCorruptedException: invalid stream header: 31303030
at org. springframework.core.serializer.support.DeserializingConverter.convert(DeserializingConverter.java:78)
at org.springframework.core.serializer.support.DeserializingConverter.convert(DeserializingConverter.java:36)
at org.springframework. data.redis.serializer.JdkSerializationRedisSerializer.deserialize(JdkSerializationRedisSerializer.java:80)
... 39 more
Caused by: java.io.StreamCorruptedException: invalid stream header: 31303030
at java.io.ObjectInputStream .readStreamHeader(ObjectInputStream.java:899)
at java.io.ObjectInputStream.(ObjectInputStream.java:357)
at org.springframework.core.ConfigurableObjectInputStream.(ConfigurableObjectInputStream.java :63)
at org.springframework.core.ConfigurableObjectInputStream.(ConfigurableObjectInputStream.java:49)
at org.springframework.core.serializer.DefaultDeserializer.deserialize(DefaultDeserializer.java:68)
at org.springframework.core.serializer.support.DeserializingConverter.convert(DeserializingConverter.java:73)
... 41 more
Solution
1. Get value
需要在redisTemplate.executePipelined入参中再加一个参数:redisTemplate.getStringSerializer(),取值成功,解决问题!!
public void testRedisListPop() { String redisKey = "testGoodsKey"; // 使用管道从redis list结构中批量获取元素 List<Object> objects = redisTemplate.executePipelined((RedisConnection redisConnection) -> { // 打开管道 redisConnection.openPipeline(); for (int i = 0; i < 2; i++) { redisConnection.rPop(redisKey.getBytes()); } return null; }, redisTemplate.getStringSerializer()); System.out.println(objects); }
总结
1、使用原生redisTemplate操作数据和redisTemplate回调函数操作数据注意点:
a.原生redisTemplate操作数据
代码
public void testRedisListPush() { String redisKey = "testGoodsKey"; List<String> redisValues = Arrays.asList("10002001", "10002002"); redisValues.forEach(redisValue -> redisTemplate.opsForList().rightPush(redisKey, redisValue)); }
redis客户端数据展示
b.redisTemplate回调函数操作数据
代码
public void testRedisListPush() { String redisKey = "testGoodsKey"; List<String> redisValues = Arrays.asList("10002001", "10002002"); // 使用管道向redis list结构中批量插入元素 redisTemplate.executePipelined((RedisConnection redisConnection) -> { // 打开管道 redisConnection.openPipeline(); // 给本次管道内添加,一次性执行的多条命令 for (String redisValue : redisValues) { redisConnection.rPush(redisKey.getBytes(), redisValue.getBytes()); } return null; }); }
redis客户端数据展示
c.不同点:
原生redisTemplate操作数据序列化方式是和redis配置统一的,redisTemplate回调函数操作数据序列化方式是自定义的。存值取值是需要注意。
The above is the detailed content of How to configure sequence and deserialization of RedisTemplate in Redis. For more information, please follow other related articles on the PHP Chinese website!

Redis plays a key role in data storage and management, and has become the core of modern applications through its multiple data structures and persistence mechanisms. 1) Redis supports data structures such as strings, lists, collections, ordered collections and hash tables, and is suitable for cache and complex business logic. 2) Through two persistence methods, RDB and AOF, Redis ensures reliable storage and rapid recovery of data.

Redis is a NoSQL database suitable for efficient storage and access of large-scale data. 1.Redis is an open source memory data structure storage system that supports multiple data structures. 2. It provides extremely fast read and write speeds, suitable for caching, session management, etc. 3.Redis supports persistence and ensures data security through RDB and AOF. 4. Usage examples include basic key-value pair operations and advanced collection deduplication functions. 5. Common errors include connection problems, data type mismatch and memory overflow, so you need to pay attention to debugging. 6. Performance optimization suggestions include selecting the appropriate data structure and setting up memory elimination strategies.

The applications of Redis in the real world include: 1. As a cache system, accelerate database query, 2. To store the session data of web applications, 3. To implement real-time rankings, 4. To simplify message delivery as a message queue. Redis's versatility and high performance make it shine in these scenarios.

Redis stands out because of its high speed, versatility and rich data structure. 1) Redis supports data structures such as strings, lists, collections, hashs and ordered collections. 2) It stores data through memory and supports RDB and AOF persistence. 3) Starting from Redis 6.0, multi-threaded I/O operations have been introduced, which has improved performance in high concurrency scenarios.

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

Redis improves application performance and scalability by caching data, implementing distributed locking and data persistence. 1) Cache data: Use Redis to cache frequently accessed data to improve data access speed. 2) Distributed lock: Use Redis to implement distributed locks to ensure the security of operation in a distributed environment. 3) Data persistence: Ensure data security through RDB and AOF mechanisms to prevent data loss.

Redis's data model and structure include five main types: 1. String: used to store text or binary data, and supports atomic operations. 2. List: Ordered elements collection, suitable for queues and stacks. 3. Set: Unordered unique elements set, supporting set operation. 4. Ordered Set (SortedSet): A unique set of elements with scores, suitable for rankings. 5. Hash table (Hash): a collection of key-value pairs, suitable for storing objects.

Redis's database methods include in-memory databases and key-value storage. 1) Redis stores data in memory, and reads and writes fast. 2) It uses key-value pairs to store data, supports complex data structures such as lists, collections, hash tables and ordered collections, suitable for caches and NoSQL databases.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Mac version
God-level code editing software (SublimeText3)

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download
The most popular open source editor