Redis5 BloomFilter installation under mac and how to use it with python
Installation and use of Bloom filter
Installation and use of Bloom filter (BloomFilter) on Redis 5.x on Centos7
1 进入redis安装目录:cd /usr/local/redis-5.0.4 2. 下载插件: git clone https://github.com/RedisBloom/RedisBloom.git # https://github.com/RedisBloom/RedisBloom 如果慢 可以使用外网访问 3. 进入插件目录: cd redisbloom/ (重命名之前为RedisBloom) 4. 执行: make 5. 修改 redis.conf,增加配置: loadmodule /usr/local/redis-5.0.4/redisbloom/redisbloom.so 6. 启动redis: src/redis-server ./redis.conf 7. 连接客户端: src/redis-cli -p 6379 8. 测试,先后执行: bf.add users francis bf.exists users francis 9. 更多内容可参考: https://oss.redislabs.com/redisbloom/
Usage of python
1. The first type Method to connect to redis Use native statements
from redis import StrictRedis from django.conf import settings class BfRedis: def __init__(self, db, host=settings.BF_REDIS_HOST, port=settings.BF_REDIS_PORT, password=settings.BF_REDIS_PASSWORD): self.client = StrictRedis(db=db, host=host, port=port, password=password) def bf_init(self, key: str, error_rate: float(), size: int): res = self.client.execute_command('BF.RESERVE', key, error_rate, size) return res def bf_exists(self, key, value): res = self.client.execute_command('BF.exists', key, value) return res def bf_add(self, key, value): return self.client.execute_command('BF.add', key, value) def bf_local_init(self, task_id, error_rate=0.0001, size=10000): """ """ key = f'bf_{task_id}' if self.client.exists(key): return True res = self.bf_init(key, error_rate, size) return res def bf_local_add(self, task_id, value): key = f'bf_{task_id}' res = self.bf_add(key, value) return res def bf_local_exists(self, task_id, value): key = f'bf_{task_id}' res = self.bf_exists(key, value) return res def bf_local_del(self, task_id): key = f'bf_{task_id}' res = self.client.delete(key) return res # bf_redis = CrawlRedisClient(0)
Use python tool module
python2安装:pip install pybloom python3安装:pip install pybloom-live
demo
from pybloom import BloomFilter, ScalableBloomFilter bf = BloomFilter(capacity=10000, error_rate=0.001) bf.add('test') print 'test' in bf sbf = ScalableBloomFilter(mode=ScalableBloomFilter.SMALL_SET_GROWTH) sbf.add('dddd') print 'ddd' in sbf
BloomFilter
is a constant capacity filter
, error_rate means that the maximum false positive rate is 0.1%, and ScalableBloomFilter
is a variable capacity Bloom filter
, it can continuously add elements. add
The method is to add an element. If the element is already in the bloom filter, it returns true. If it is not, it returns fasle and adds the element to the filter. To determine whether an element is in the filter, just use the in operator.
The above is the detailed content of Redis5 BloomFilter installation under mac and how to use it with python. For more information, please follow other related articles on the PHP Chinese website!

Redis's data model and structure include five main types: 1. String: used to store text or binary data, and supports atomic operations. 2. List: Ordered elements collection, suitable for queues and stacks. 3. Set: Unordered unique elements set, supporting set operation. 4. Ordered Set (SortedSet): A unique set of elements with scores, suitable for rankings. 5. Hash table (Hash): a collection of key-value pairs, suitable for storing objects.

Redis's database methods include in-memory databases and key-value storage. 1) Redis stores data in memory, and reads and writes fast. 2) It uses key-value pairs to store data, supports complex data structures such as lists, collections, hash tables and ordered collections, suitable for caches and NoSQL databases.

Redis is a powerful database solution because it provides fast performance, rich data structures, high availability and scalability, persistence capabilities, and a wide range of ecosystem support. 1) Extremely fast performance: Redis's data is stored in memory and has extremely fast read and write speeds, suitable for high concurrency and low latency applications. 2) Rich data structure: supports multiple data types, such as lists, collections, etc., which are suitable for a variety of scenarios. 3) High availability and scalability: supports master-slave replication and cluster mode to achieve high availability and horizontal scalability. 4) Persistence and data security: Data persistence is achieved through RDB and AOF to ensure data integrity and reliability. 5) Wide ecosystem and community support: with a huge ecosystem and active community,

Key features of Redis include speed, flexibility and rich data structure support. 1) Speed: Redis is an in-memory database, and read and write operations are almost instantaneous, suitable for cache and session management. 2) Flexibility: Supports multiple data structures, such as strings, lists, collections, etc., which are suitable for complex data processing. 3) Data structure support: provides strings, lists, collections, hash tables, etc., which are suitable for different business needs.

The core function of Redis is a high-performance in-memory data storage and processing system. 1) High-speed data access: Redis stores data in memory and provides microsecond-level read and write speed. 2) Rich data structure: supports strings, lists, collections, etc., and adapts to a variety of application scenarios. 3) Persistence: Persist data to disk through RDB and AOF. 4) Publish subscription: Can be used in message queues or real-time communication systems.

Redis supports a variety of data structures, including: 1. String, suitable for storing single-value data; 2. List, suitable for queues and stacks; 3. Set, used for storing non-duplicate data; 4. Ordered Set, suitable for ranking lists and priority queues; 5. Hash table, suitable for storing object or structured data.

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 Chinese version
Chinese version, very easy to use

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 English version
Recommended: Win version, supports code prompts!