How SpringBoot integrates Redis to serialize and store Java objects
1. Background
1. Thinking
Through our previous study, we can already store strings in Redis, so what should we do to store Java objects in Redis? What to do?
2. Solution
We can convert Java objects into JSON objects, then into JSON strings, and store them in Redis. Then when we take out the data from Redis, we only Can take out a string and convert it into a Java object. Does this series of operations seem a bit troublesome?
2. Source code analysis
The above is the source code fragment in the RedisAutoConfiguration class. It can be seen that SpringBoot automatically configures Redis. At that time, redisTemplate and stringRedisTemplate
were injected into the container. RedisTemplate
After seeing this @ConditionalOnMissingBean annotation, you know that if there is a RedisTemplate object in the Spring container, this automatically configured RedisTemplate will not be instantiated. Therefore, we have the ability to write custom configuration classes to configure RedisTemplate.
3. Inject RedisTemplate
1. Introduce dependencies
<!-- redis --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency>
The above has introduced the dependency of redis, please add the other dependencies by yourself
2. Redis connection information
spring: # Redis配置 redis: host: 127.0.0.1 port: 6379 database: 10 jedis: pool: # 连接池最大连接数(使用负值表示没有限制) max-active: 50 # 连接池最大阻塞等待时间(使用负值表示没有限制) max-wait: 3000ms # 连接池中的最大空闲连接数 max-idle: 20 # 连接池中的最小空闲连接数 min-idle: 5 # 连接超时时间(毫秒) timeout: 5000ms
3. Redis core configuration class
We place the core configuration of Redis in the RedisConfig.java file
package com.zyxx.redistest.common; import com.fasterxml.jackson.annotation.JsonAutoDetect; import com.fasterxml.jackson.annotation.PropertyAccessor; import com.fasterxml.jackson.databind.ObjectMapper; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer; import org.springframework.data.redis.serializer.RedisSerializer; import org.springframework.data.redis.serializer.StringRedisSerializer; /** * @ClassName RedisConfig * @Description * @Author Lizhou * @Date 2020-10-22 9:48:48 **/ @Configuration public class RedisConfig { /** * RedisTemplate配置 */ @Bean public RedisTemplate<Object, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) { // 配置redisTemplate RedisTemplate<Object, Object> redisTemplate = new RedisTemplate<>(); redisTemplate.setConnectionFactory(redisConnectionFactory); // 设置序列化 Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<>(Object.class); ObjectMapper om = new ObjectMapper(); om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY); om.activateDefaultTyping(LaissezFaireSubTypeValidator.instance, ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY); jackson2JsonRedisSerializer.setObjectMapper(om); // key序列化 redisTemplate.setKeySerializer(new StringRedisSerializer()); // value序列化 redisTemplate.setValueSerializer(jackson2JsonRedisSerializer); // Hash key序列化 redisTemplate.setHashKeySerializer(new StringRedisSerializer()); // Hash value序列化 redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer); redisTemplate.afterPropertiesSet(); return redisTemplate; } }
We inject a file named redisTemplate, a Bean of type RedisTemplate
4, Redis tool class
We will conduct a series of Redis The series of operations are placed in the RedisUtils.java file
package com.zyxx.redistest.common; import lombok.extern.slf4j.Slf4j; import org.apache.commons.lang3.StringUtils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.stereotype.Component; /** * @ClassName RedisUtils * @Description * @Author Lizhou * @Date 2020-10-22 10:10:10 **/ @Slf4j @Component public class RedisUtils { @Autowired private RedisTemplate<String, Object> redisTemplate; /** * 根据key读取数据 */ public Object get(final String key) { if (StringUtils.isBlank(key)) { return null; } try { return redisTemplate.opsForValue().get(key); } catch (Exception e) { e.printStackTrace(); } return null; } /** * 写入数据 */ public boolean set(final String key, Object value) { if (StringUtils.isBlank(key)) { return false; } try { redisTemplate.opsForValue().set(key, value); log.info("存入redis成功,key:{},value:{}", key, value); return true; } catch (Exception e) { log.error("存入redis失败,key:{},value:{}", key, value); e.printStackTrace(); } return false; } }
We wrote the get and set methods for testing
4. Test
1. Create a Java entity class UserInfo
package com.zyxx.redistest.common; import lombok.Data; import java.io.Serializable; import java.util.Date; /** * @ClassName UserInfo * @Description * @Author Lizhou * @Date 2020-10-22 10:12:12 **/ @Data public class UserInfo implements Serializable { /** * id */ private Integer id; /** * 姓名 */ private String name; /** * 创建时间 */ private Date createTime; }
2. Test case
package com.zyxx.redistest; import com.zyxx.redistest.common.RedisUtils; import com.zyxx.redistest.common.UserInfo; import org.junit.jupiter.api.Test; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; import java.util.Date; @SpringBootTest class RedisTestApplicationTests { @Autowired private RedisUtils redisUtil; @Test void contextLoads() { UserInfo userInfo = new UserInfo(); userInfo.setId(1); userInfo.setName("jack"); userInfo.setCreateTime(new Date()); // 放入redis redisUtil.set("user", userInfo); // 从redis中获取 System.out.println("获取到数据:" + redisUtil.get("user")); } }
We store a data with key "user" and value as UserInfo object into Redis, and then obtain the data based on key
3. Test results
It can be seen that we successfully stored Java object data in Redis and successfully obtained the object.
The above is the detailed content of How SpringBoot integrates Redis to serialize and store Java objects. For more information, please follow other related articles on the PHP Chinese website!

Redis is a NoSQL database suitable for efficient storage and access of large-scale data. 1.Redis is an open source memory data structure storage system that supports multiple data structures. 2. It provides extremely fast read and write speeds, suitable for caching, session management, etc. 3.Redis supports persistence and ensures data security through RDB and AOF. 4. Usage examples include basic key-value pair operations and advanced collection deduplication functions. 5. Common errors include connection problems, data type mismatch and memory overflow, so you need to pay attention to debugging. 6. Performance optimization suggestions include selecting the appropriate data structure and setting up memory elimination strategies.

The applications of Redis in the real world include: 1. As a cache system, accelerate database query, 2. To store the session data of web applications, 3. To implement real-time rankings, 4. To simplify message delivery as a message queue. Redis's versatility and high performance make it shine in these scenarios.

Redis stands out because of its high speed, versatility and rich data structure. 1) Redis supports data structures such as strings, lists, collections, hashs and ordered collections. 2) It stores data through memory and supports RDB and AOF persistence. 3) Starting from Redis 6.0, multi-threaded I/O operations have been introduced, which has improved performance in high concurrency scenarios.

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

Redis improves application performance and scalability by caching data, implementing distributed locking and data persistence. 1) Cache data: Use Redis to cache frequently accessed data to improve data access speed. 2) Distributed lock: Use Redis to implement distributed locks to ensure the security of operation in a distributed environment. 3) Data persistence: Ensure data security through RDB and AOF mechanisms to prevent data loss.

Redis's data model and structure include five main types: 1. String: used to store text or binary data, and supports atomic operations. 2. List: Ordered elements collection, suitable for queues and stacks. 3. Set: Unordered unique elements set, supporting set operation. 4. Ordered Set (SortedSet): A unique set of elements with scores, suitable for rankings. 5. Hash table (Hash): a collection of key-value pairs, suitable for storing objects.

Redis's database methods include in-memory databases and key-value storage. 1) Redis stores data in memory, and reads and writes fast. 2) It uses key-value pairs to store data, supports complex data structures such as lists, collections, hash tables and ordered collections, suitable for caches and NoSQL databases.

Redis is a powerful database solution because it provides fast performance, rich data structures, high availability and scalability, persistence capabilities, and a wide range of ecosystem support. 1) Extremely fast performance: Redis's data is stored in memory and has extremely fast read and write speeds, suitable for high concurrency and low latency applications. 2) Rich data structure: supports multiple data types, such as lists, collections, etc., which are suitable for a variety of scenarios. 3) High availability and scalability: supports master-slave replication and cluster mode to achieve high availability and horizontal scalability. 4) Persistence and data security: Data persistence is achieved through RDB and AOF to ensure data integrity and reliability. 5) Wide ecosystem and community support: with a huge ecosystem and active community,


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 English version
Recommended: Win version, supports code prompts!

SublimeText3 Chinese version
Chinese version, very easy to use

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software