search

Before introducing the usage of self in Python, let’s first introduce the classes and instances in Python
We know that the most important concepts of object-oriented are classes and instances. Classes are abstract templates. For example, an abstract thing like a student can be represented by a Student class. Instances are specific "objects" created based on classes. Each object inherits the same methods from the class, but its data may be different.
1. Take the Student class as an example. In Python, the class is defined as follows:

class Student(object):
    pass

(Object) indicates which class the class inherits from. The Object class is a class that all classes will inherit.

2. Instance: After the class is defined, an instance of Student can be created through the Student class. The instance is created through the class name ():

student = Student()

3. Since the class serves as a template Therefore, when creating an instance, we can forcefully fill in the attributes that we think must be bound. A built-in method in Python, the __init__ method, is used here. For example, in the Student class, tie attributes such as name and score to it:

class Student(object):
    def __init__(self, name, score):
        self.name = name
        self.score = score

Note here: (1), ## The first parameter of the #__init__ method is always self, which represents the created class instance itself. Therefore, within the __init__ method, you can put each This property is bound to self, because self points to the created instance itself. (2). With the __init__ method, when creating an instance, you cannot pass in empty parameters. You must pass in parameters that match the __init__ method, but self is not required. Pass, the Python interpreter will pass the instance variables in by itself:

>>>student = Student("Hugh", 99)
>>>student.name
"Hugh"
>>>student.score
99

In addition, here

self refers to the class itself, self.name is Student# The attribute variables of the ## class are owned by the Student class. The name is an external parameter, not one that comes with the Student class. Therefore, self.name = name means to assign the value of the external parameter name to the Student class’s own attribute variable self.name. 4. Compared with ordinary numbers, there is only one difference when defining a function in a class, that is,

The first parameter

is always the instance variable of the class itselfself , and when calling, there is no need to pass this parameter. In addition, class methods (functions) are no different from ordinary functions. You can use default parameters, variable parameters or keyword parameters (*args is variable parameters, args What is received is a tuple, **kw is a keyword parameter, and what kw receives is a dict). 5. Since the

Student

class instance itself owns these data, then to access these data, there is no need to access it from external functions, but you can directly define access within the Student class. Functions (methods) of data, so that "data" can be encapsulated. These functions that encapsulate data are associated with the Student class itself, and are called class methods:

class Student(obiect):
    def __init__(self, name, score):
        self.name = name
        self.score = score
    def print_score(self):
        print "%s: %s" % (self.name, self.score)
>>>student = Student("Hugh", 99)
>>>student.print_score
Hugh: 99
In this way, when we look at the Student class from the outside, we only need to know what needs to be given to create an instance. name and score. How to print is defined inside the Student class.

These data and logic are encapsulated, making it easy to call, but the details of the internal implementation are not known.

If you want to prevent internal attributes from being accessed externally, you can add two underscores

before the name of the attribute. In Python, if the variable name of an instance starts with

, It has become a private variable (private), which can only be accessed internally and not externally. Therefore, we changed the Student class:

class Student(object):

    def __init__(self, name, score):
        self.__name = name
        self.__score = score
    def print_score(self):
        print "%s: %s" %(self.__name,self.__score)
After the change, there is no change for the external code, but Instance variable

.__name

and instance variable .__score can no longer be accessed from the outside: <pre class='brush:php;toolbar:false;'>&gt;&gt;&gt; student = Student(&amp;#39;Hugh&amp;#39;, 99) &gt;&gt;&gt; student.__name Traceback (most recent call last): File &quot;&lt;stdin&gt;&quot;, line 1, in &lt;module&gt; AttributeError: &amp;#39;Student&amp;#39; object has no attribute &amp;#39;__name&amp;#39;</pre> This ensures that external code cannot modify the internal state of the object at will, so Code is more robust through the protection of access restrictions.

But what if the external code wants to get the name and score? You can add methods like get_name and get_score to the Student class:

class Student(object):
    ...

    def get_name(self):
        return self.__name

    def get_score(self):
        return self.__score

What if you want to allow external code to modify the score? You can add the set_score method to the Student class:

class Student(object):
    ...

    def set_score(self, score):
        self.__score = score

It should be noted that in Python, variable names are similar to

__xxx__

, that is, they start with a double underscore and end with a double underscore. It is a special variable. Special variables can be accessed directly and are not private variables. Therefore, variable names such as __name__ and __score__ cannot be used. Sometimes, you will see instance variable names starting with an underscore, such as _name. Such instance variables can be accessed externally. However, according to the convention, when you see such a variable When, it means, "Although I can be accessed, please treat me as a private variable and do not access it at will."

Another benefit of encapsulation is that you can add new methods

to the Student class at any time, such as: get_grade:<pre class='brush:php;toolbar:false;'>class Student(object): ... def get_grade(self): if self.score &gt;= 90: return &amp;#39;A&amp;#39; elif self.score &gt;= 60: return &amp;#39;B&amp;#39; else: return &amp;#39;C&amp;#39;</pre>Similarly, ## The #get_grade

method can be called directly on the instance variable without knowing the internal implementation details:

>>> student.get_grade()
&#39;A&#39;

6、self的仔细用法
(1)、self代表类的实例,而非类。

class Test:
    def ppr(self):
        print(self)
        print(self.__class__)

t = Test()
t.ppr()
执行结果:
<__main__.Test object at 0x000000000284E080>
<class &#39;__main__.Test&#39;>

从上面的例子中可以很明显的看出,self代表的是类的实例。而self.__class__则指向类。
注意:把self换成this,结果也一样,但Python中最好用约定俗成的self。
(2)、self可以不写吗?
在Python解释器的内部,当我们调用t.ppr()时,实际上Python解释成Test.ppr(t),也就是把self替换成了类的实例。

class Test:
    def ppr():
        print(self)

t = Test()
t.ppr()

运行结果如下:

Traceback (most recent call last):
  File "cl.py", line 6, in
    t.ppr()
TypeError: ppr() takes 0 positional arguments but 1 was given

运行时提醒错误如下:ppr在定义时没有参数,但是我们运行时强行传了一个参数。

由于上面解释过了t.ppr()等同于Test.ppr(t),所以程序提醒我们多传了一个参数t。

这里实际上已经部分说明了self在定义时不可以省略。

当然,如果我们的定义和调用时均不传类实例是可以的,这就是类方法。

class Test:
    def ppr():
        print(__class__)

Test.ppr()

运行结果:
<class &#39;__main__.Test&#39;>

(3)、在继承时,传入的是哪个实例,就是那个传入的实例,而不是指定义了self的类的实例。

class Parent:
    def pprt(self):
        print(self)

class Child(Parent):
    def cprt(self):
        print(self)
c = Child()
c.cprt()
c.pprt()
p = Parent()
p.pprt()

运行结果:

<__main__.child object at>
<__main__.child object at>
<__main__.parent object at>

解释:
运行c.cprt()时应该没有理解问题,指的是Child类的实例。
但是在运行c.pprt()时,等同于Child.pprt(c),所以self指的依然是Child类的实例,由于self中没有定义pprt()方法,所以沿着继承树往上找,发现在父类Parent中定义了pprt()方法,所以就会成功调用。

(4)、在描述符类中,self指的是描述符类的实例

class Desc:
    def __get__(self, ins, cls):
        print(&#39;self in Desc: %s &#39; % self )
        print(self, ins, cls)
class Test:
    x = Desc()
    def prt(self):
        print(&#39;self in Test: %s&#39; % self)
t = Test()
t.prt()
t.x

运行结果如下:

self in Test: <__main__.test object at>
self in Desc: <__main__.desc object at>
<__main__.desc object at> <__main__.test object at>

这里主要的疑问应该在:Desc类中定义的self不是应该是调用它的实例t吗?怎么变成了Desc类的实例了呢?
因为这里调用的是t.x,也就是说是Test类的实例t的属性x,由于实例t中并没有定义属性x,所以找到了类属性x,而该属性是描述符属性,为Desc类的实例而已,所以此处并没有顶用Test的任何方法。

那么我们如果直接通过类来调用属性x也可以得到相同的结果。

下面是把t.x改为Test.x运行的结果。

self in Test: <__main__.Test object at 0x00000000022570B8>
self in Desc: <__main__.Desc object at 0x000000000223E208>
<__main__.Desc object at 0x000000000223E208> None <class &#39;__main__.Test&#39;>

The above is the detailed content of How to use self in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:亿速云. If there is any infringement, please contact admin@php.cn delete
Python: Games, GUIs, and MorePython: Games, GUIs, and MoreApr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Applications and Use Cases ComparedPython vs. C : Applications and Use Cases ComparedApr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic ApproachThe 2-Hour Python Plan: A Realistic ApproachApr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Exploring Its Primary ApplicationsPython: Exploring Its Primary ApplicationsApr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

How Much Python Can You Learn in 2 Hours?How Much Python Can You Learn in 2 Hours?Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics in project and problem-driven methods within 10 hours?How to teach computer novice programming basics in project and problem-driven methods within 10 hours?Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading?How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading?Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

What should I do if the '__builtin__' module is not found when loading the Pickle file in Python 3.6?What should I do if the '__builtin__' module is not found when loading the Pickle file in Python 3.6?Apr 02, 2025 am 07:12 AM

Error loading Pickle file in Python 3.6 environment: ModuleNotFoundError:Nomodulenamed...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools