


Library
import time import ddddocr
Source code
# import threading # 导入threading模块 # from Feishu_SendMsg import * # Identification verification code import time import ddddocr interval = 100 * 60 # def delayCall(): # 定义方法 # SendMsg("选题 快快快!!!") # timer=threading.Timer(interval,delayCall) # 每秒运行 # timer.start() # 执行方法 # if __name__ == '__main__': # # t1=threading.Timer(interval,function=delayCall) # 创建定时器 # t1.start() # 开始执行线程 from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.keys import Keys # SendMsg("自动填表单") options = webdriver.ChromeOptions() options.add_argument('--enable-automation') options.add_argument('--no-sandbox') options.add_argument('--disable-extensions') options.add_argument('--start-maximized') options.add_argument('--disable-infobars') prefs = {"profile.default_content_setting_values.autocomplete_enabled": 2} options.add_experimental_option("prefs", prefs) # SendMsg("创建 Chrome 浏览器实例") # 创建 Chrome 浏览器实例 browser = webdriver.Chrome(options=options) # SendMsg("打开网页") browser.get('www.tttttttt.com') # SendMsg("找到账号和密码框元素并输入指定字符串") username = browser.find_element("name","username") password = browser.find_element("name","userpass") usercode = browser.find_element("name","usercode") img_verifycode = browser.find_element("id","img_verifycode") # SendMsg("自动填充账号密码") username.send_keys("11111") password.send_keys("11111") verifycodeBase64 = img_verifycode.screenshot_as_base64 ocr = ddddocr.DdddOcr() res = ocr.classification(verifycodeBase64) usercode.send_keys(res) # SendMsg(f"识别并填写验证码: {res}") # SendMsg("提交表单") password.send_keys(Keys.RETURN) # SendMsg("登陆: 提交表单")
Knowledge point supplement
The following will introduce the related use of the dddddocr library used in the article
Identification There are many Python libraries for verification codes, and they are not easy to use. The ddddocr (with brother ocr) library is a simple and practical library for identifying verification codes. I recommend you to use
dddddocr.
import os import ddddocr from time import sleep from PIL import Image from selenium import webdriver from selenium.webdriver.common.by import By class GetVerificationCode: def __init__(self): self.res = None url = '要登录的地址' self.driver = webdriver.Chrome() self.driver.maximize_window() # 将浏览器最大化 self.driver.get(url) # 获取验证码信息 def getVerification(self): # 获取当前文件的位置、并获取保存截屏的位置 current_location = os.path.dirname(__file__) screenshot_path = os.path.join(current_location, "..", "VerificationCode") # 截取当前网页并放到自定义目录下,并命名为printscreen,该截图中有我们需要的验证码 sleep(1) self.driver.save_screenshot(screenshot_path + '//' + 'printscreen.png') sleep(1) # 定位验证码 imgelement = self.driver.find_element(By.XPATH, '验证码图片的Xpath定位') # 获取验证码x,y轴坐标 location = imgelement.location # 获取验证码的长宽 size = imgelement.size # 写成我们需要截取的位置坐标 rangle = (int(location['x'] + 430), int(location['y'] + 200), int(location['x'] + size['width'] + 530), int(location['y'] + size['height'] + 250)) # 打开截图 i = Image.open(screenshot_path + '//' + 'printscreen.png') # 使用Image的crop函数,从截图中再次截取我们需要的区域 fimg = i.crop(rangle) fimg = fimg.convert('RGB') # 保存我们截下来的验证码图片,并读取验证码内容 fimg.save(screenshot_path + '//' + 'code.png') ocr = ddddocr.DdddOcr() with open(screenshot_path + '//' + 'code.png', 'rb') as f: img_bytes = f.read() self.res = ocr.classification(img_bytes) print('识别出的验证码为:' + self.res) # 判断验证码错误时的提示信息是否存在 def isElementPresent(self, by, value): try: element = self.driver.find_element(by=by, value=value) except NoSuchElementException: pass # 发生了NoSuchElementException异常,说明页面中未找到该元素,返回False return False else: # 没有发生异常,表示在页面中找到了该元素,返回True return True # 登录 def login(self): self.getVerification() self.driver.find_element(By.XPATH, '用户名输入框Xpath定位').send_keys('用户名') self.driver.find_element(By.XPATH, '密码输入框Xpath定位').send_keys('密码') self.driver.find_element(By.XPATH, '验证码输入框Xpath定位').send_keys(self.res) sleep(1) self.driver.find_element(By.XPATH, '登录按钮Xpath定位').click() sleep(2) isFlag = True while isFlag: try: isPresent = self.isElementPresent(By.XPATH, '验证码错误时的提示信息Xpath定位') if isPresent is True: codeText = self.driver.find_element(By.XPATH, '验证码错误时的提示信息Xpath定位').text if codeText == "验证码不正确": self.getVerification() sleep(2) self.driver.find_element(By.XPATH, '验证码输入框Xpath定位').clear() sleep(1) self.driver.find_element(By.XPATH, '验证码输入框Xpath定位').send_keys(self.res) sleep(1) self.driver.find_element(By.XPATH, '登录按钮Xpath定位').click() sleep(2) tips = self.driver.find_element(By.XPATH, '未输入验证码时的提示信息Xpath定位').text if tips == "请输入验证码": self.getVerification() sleep(2) self.driver.find_element(By.XPATH, '验证码输入框Xpath定位').click() sleep(1) self.driver.find_element(By.XPATH, '验证码输入框Xpath定位').send_keys(self.res) sleep(1) self.driver.find_element(By.XPATH, '登录按钮Xpath定位').click() sleep(2) continue else: print("验证码正确,登录成功!") except NoSuchElementException: pass else: isFlag = False sleep(5) self.driver.quit() if __name__ == '__main__': GetVerificationCode().login()
Recognition result
The above is the detailed content of How to implement the functions of obtaining web page content and automatically filling in forms and logging in using Python. For more information, please follow other related articles on the PHP Chinese website!

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Mac version
God-level code editing software (SublimeText3)