search
HomeBackend DevelopmentPython TutorialHow to use Python pomegranate library to implement a spelling checker based on Bayesian network

1. Prepare data

We use Peter Norvig’s “big.txt” text file as a sample data set. This data set contains a large number of words from English articles, and the upper and lower case has been unified to lower case. We need to read the file line by line and use the re library in Python to perform preliminary processing of the text:

import re
# 读取文本并进行预处理
with open('big.txt') as f:
    texts = f.readlines()
# 清洗数据,去掉数字和标点符号
words = []
for t in texts:
    words += re.findall(r'\w+', t.lower())

2. Build a Bayesian network

We need to build a Bayesian network To handle the spell checker task, the network contains 3 nodes: hidden state (correct spelling), incorrect observation, and correct observation. The implicit state is the causal node, and the wrong observation node and the correct observation node directly depend on the implicit state node.

The following is the code to establish the Bayesian network:

from pomegranate import *
# 建立隐因节点
correct_spell = State(DiscreteDistribution(dict.fromkeys(words, 1)), name='Correct_Spelling')
# 建立观察节点(错误拼写和正确拼写)
letter_dist = {}
for w in words:
    for l in w:
        if l not in letter_dist:
            letter_dist[l] = len(letter_dist)
error_spelling = State(DiscreteDistribution(letter_dist), name='Error_Spelling')
correct_spelling_observed = State(DiscreteDistribution(letter_dist), name='Correct_Spelling_Observed')
# 建立连边关系
model = BayesianNetwork('Spelling Correction')
model.add_states(correct_spell, error_spelling, correct_spelling_observed)
model.add_edge(correct_spell, error_spelling)
model.add_edge(correct_spell, correct_spelling_observed)
model.bake()

3. Training model

After the data is ready, we can start training the Bayesian network. During training, we need to estimate network parameters based on observed data.

The following is the code for training the Bayesian Network:

# 利用语料库训练贝叶斯网络
for word in words:
    model.predict(word)
# 打印结果(即每个字母在不同位置出现的统计概率)
print(error_spelling.distribution.parameters[0])

As you can see from the results generated in the above code, during the training process, BayesianNetwork learns the occurrence of different letters in words in the sample data The probability distribution of times can better capture the correct grammatical structure of English words.

4. Test model

After the training is completed, we can use the Bayesian network and use the Viterbi algorithm to find the optimal path for spelling correction.

The following is the code to test the Bayesian network:

from pomegranate import *
# 定义输入单词
test_word = 'speling'
# 将输入单词转换为列表
letters = list(test_word)
# 遍历该输入单词中的所有字母,并将每个字母的错误概率加起来(实际上就是计算“错误观察”节点的联合概率)
error_prob = sum([error_spelling.distribution.probability(l) for l in letters])
# 构建“正确观察”节点的联合概率矩阵
correct_prob = [[''.join(letters[k:j]) for j in range(k+1, len(letters)+1)] for k in range(len(letters))]
# 利用Viterbi算法查找最优路径(即最可能的正确单词)
corrected_word = max(model.viterbi(correct_prob)[1], key=lambda x: x[1])[0]
# 打印结果
print('Original word:', test_word)
print('Corrected word:', corrected_word)

In the above code, we convert the input words into a list of characters and iterate over them. The sum of error probabilities for all characters is then calculated and a joint probability matrix of "correctly observed" nodes is constructed. Finally, the Viterbi algorithm is used to find the optimal path (that is, the word with the highest probability) and output it as the result of automatic correction.

The above is the detailed content of How to use Python pomegranate library to implement a spelling checker based on Bayesian network. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:亿速云. If there is any infringement, please contact admin@php.cn delete
Python: compiler or Interpreter?Python: compiler or Interpreter?May 13, 2025 am 12:10 AM

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Python For Loop vs While Loop: When to Use Which?Python For Loop vs While Loop: When to Use Which?May 13, 2025 am 12:07 AM

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Python loops: The most common errorsPython loops: The most common errorsMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

For loop and while loop in Python: What are the advantages of each?For loop and while loop in Python: What are the advantages of each?May 13, 2025 am 12:01 AM

Forloopsareadvantageousforknowniterationsandsequences,offeringsimplicityandreadability;whileloopsareidealfordynamicconditionsandunknowniterations,providingcontrolovertermination.1)Forloopsareperfectforiteratingoverlists,tuples,orstrings,directlyacces

Python: A Deep Dive into Compilation and InterpretationPython: A Deep Dive into Compilation and InterpretationMay 12, 2025 am 12:14 AM

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Is Python an interpreted or a compiled language, and why does it matter?Is Python an interpreted or a compiled language, and why does it matter?May 12, 2025 am 12:09 AM

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

For Loop vs While Loop in Python: Key Differences ExplainedFor Loop vs While Loop in Python: Key Differences ExplainedMay 12, 2025 am 12:08 AM

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

For and While loops: a practical guideFor and While loops: a practical guideMay 12, 2025 am 12:07 AM

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.