1. Game explanation
"Zou Si Er" is mostly active in Jinan, Liaocheng, Heze and other places in Shandong Province. It is a chess game, especially suitable for children to try.
On a 4×4 chessboard, each side has 4 pieces, which are placed in the four positions on the two top end lines of the chessboard. The picture below
is how "Zou Si'er" starts.
2. Game Rules
The game rules of "Go Four" are:
1. Both sides take turns to move, and each step can only move one square in one of the up, down, left, and right directions, and cannot move diagonally. If one party cannot move, the other party goes.
2. When one of Party A's pieces moves to a line, there are only two of Party A's pieces and one of Party B's pieces on this line, and Party A's two pieces are connected, and Party B's piece is connected to one of Party A's two pieces. If the pieces are connected, then the piece of Party B will be eaten.
The picture below is an example of the styles that can be eaten:
3. The side with less than 2 pieces is the loser. If neither side can beat the other, it can be considered a draw.
3. Environment installation
1) Materials (pictures)
import pygame as pg
from pygame.locals import *
import sys
import time
import numpy as np
pg.init()
size = width, height = 600, 400
screen = pg.display.set_mode(size)
f_clock = pg.time.Clock()
fps = 30
pg.display.set_caption("走四棋儿")
background = pg.image.load("background.png").convert_alpha()
glb_pos = [[(90, 40), (190, 40), (290, 40), (390, 40)],
[(90, 140), (190, 140), (290, 140), (390, 140)],
[(90, 240), (190, 240), (290, 240), (390, 240)],
[(90, 340), (190, 340), (290, 340), (390, 340)]]
class ChessPieces():
def __init__(self, img_name):
self.name = img_name
self.id = None
if self.name == 'heart':
self.id = 2
elif self.name == 'spade':
self.id = 3
self.img = pg.image.load(img_name + ".png").convert_alpha()
self.rect = self.img.get_rect()
self.pos_x, self.pos_y = 0, 0
self.alive_state = True
def get_rect(self):
return (self.rect[0], self.rect[1])
def get_pos(self):
return (self.pos_x, self.pos_y)
def update(self):
if self.alive_state == True:
self.rect[0] = glb_pos[self.pos_y][self.pos_x][0]
self.rect[1] = glb_pos[self.pos_y][self.pos_x][1]
screen.blit(self.img, self.rect)
class Pointer():
def __init__(self):
self.img = pg.image.load("pointer.png").convert_alpha()
self.rect = self.img.get_rect()
self.show = False
self.selecting_item = False
def point_to(self, Heart_Blade_class):
if Heart_Blade_class.alive_state:
self.pointing_to_item = Heart_Blade_class
self.item_pos = Heart_Blade_class.get_rect()
self.rect[0], self.rect[1] = self.item_pos[0], self.item_pos[1] - 24
def update(self):
screen.blit(self.img, self.rect)
class GlobalSituation():
def __init__(self):
self.glb_situation = np.array([[2, 2, 2, 2],
[0, 0, 0, 0],
[0, 0, 0, 0],
[3, 3, 3, 3]], dtype=np.uint8)
self.spade_turn = None
def refresh_situation(self):
self.glb_situation = np.zeros([4, 4], np.uint8)
for i in range(4):
if heart[i].alive_state:
self.glb_situation[heart[i].pos_y, heart[i].pos_x] = heart[i].id
for i in range(4):
if spade[i].alive_state:
self.glb_situation[spade[i].pos_y, spade[i].pos_x] = spade[i].id
for i in range(4):
print(self.glb_situation[i][:])
print('=' * 12)
if self.spade_turn != None:
self.spade_turn = not self.spade_turn
def check_situation(self, moved_item):
curr_pos_x, curr_pos_y = moved_item.get_pos()
curr_pos_col = self.glb_situation[:, curr_pos_x]
curr_pos_raw = self.glb_situation[curr_pos_y, :]
enemy_die = False
if moved_item.id == 2:
if np.sum(curr_pos_col) == 7:
if (curr_pos_col == np.array([0, 2, 2, 3])).all():
enemy_die = True
self.glb_situation[3, curr_pos_x] = 0
for spade_i in spade:
if spade_i.alive_state and spade_i.pos_x == curr_pos_x and spade_i.pos_y == 3:
spade_i.alive_state = False
elif (curr_pos_col == np.array([2, 2, 3, 0])).all():
enemy_die = True
self.glb_situation[2, curr_pos_x] = 0
for spade_i in spade:
if spade_i.alive_state and spade_i.pos_x == curr_pos_x and spade_i.pos_y == 2:
spade_i.alive_state = False
elif (curr_pos_col == np.array([0, 3, 2, 2])).all():
enemy_die = True
self.glb_situation[1, curr_pos_x] = 0
for spade_i in spade:
if spade_i.alive_state and spade_i.pos_x == curr_pos_x and spade_i.pos_y == 1:
spade_i.alive_state = False
elif (curr_pos_col == np.array([3, 2, 2, 0])).all():
enemy_die = True
self.glb_situation[0, curr_pos_x] = 0
for spade_i in spade:
if spade_i.alive_state and spade_i.pos_x == curr_pos_x and spade_i.pos_y == 0:
spade_i.alive_state = False
if np.sum(curr_pos_raw) == 7:
if (curr_pos_raw == np.array([0, 2, 2, 3])).all():
enemy_die = True
self.glb_situation[curr_pos_y, 3] = 0
for spade_i in spade:
if spade_i.alive_state and spade_i.pos_x == 3 and spade_i.pos_y == curr_pos_y:
spade_i.alive_state = False
elif (curr_pos_raw == np.array([2, 2, 3, 0])).all():
enemy_die = True
self.glb_situation[curr_pos_y, 2] = 0
for spade_i in spade:
if spade_i.alive_state and spade_i.pos_x == 2 and spade_i.pos_y == curr_pos_y:
spade_i.alive_state = False
elif (curr_pos_raw == np.array([0, 3, 2, 2])).all():
enemy_die = True
self.glb_situation[curr_pos_y, 1] = 0
for spade_i in spade:
if spade_i.alive_state and spade_i.pos_x == 1 and spade_i.pos_y == curr_pos_y:
spade_i.alive_state = False
elif (curr_pos_raw == np.array([3, 2, 2, 0])).all():
enemy_die = True
self.glb_situation[curr_pos_y, 0] = 0
for spade_i in spade:
if spade_i.alive_state and spade_i.pos_x == 0 and spade_i.pos_y == curr_pos_y:
spade_i.alive_state = False
elif moved_item.id == 3:
if np.sum(curr_pos_col) == 8:
if (curr_pos_col == np.array([0, 3, 3, 2])).all():
enemy_die = True
self.glb_situation[3, curr_pos_x] = 0
for heart_i in heart:
if heart_i.alive_state and heart_i.pos_x == curr_pos_x and heart_i.pos_y == 3:
heart_i.alive_state = False
elif (curr_pos_col == np.array([3, 3, 2, 0])).all():
enemy_die = True
self.glb_situation[2, curr_pos_x] = 0
for heart_i in heart:
if heart_i.alive_state and heart_i.pos_x == curr_pos_x and heart_i.pos_y == 2:
heart_i.alive_state = False
elif (curr_pos_col == np.array([0, 2, 3, 3])).all():
enemy_die = True
self.glb_situation[1, curr_pos_x] = 0
for heart_i in heart:
if heart_i.alive_state and heart_i.pos_x == curr_pos_x and heart_i.pos_y == 1:
heart_i.alive_state = False
elif (curr_pos_col == np.array([2, 3, 3, 0])).all():
enemy_die = True
self.glb_situation[0, curr_pos_x] = 0
for heart_i in heart:
if heart_i.alive_state and heart_i.pos_x == curr_pos_x and heart_i.pos_y == 0:
heart_i.alive_state = False
if np.sum(curr_pos_raw) == 8:
if (curr_pos_raw == np.array([0, 3, 3, 2])).all():
enemy_die = True
self.glb_situation[curr_pos_y, 3] = 0
for heart_i in heart:
if heart_i.alive_state and heart_i.pos_x == 3 and heart_i.pos_y == curr_pos_y:
heart_i.alive_state = False
elif (curr_pos_raw == np.array([3, 3, 2, 0])).all():
enemy_die = True
self.glb_situation[curr_pos_y, 2] = 0
for heart_i in heart:
if heart_i.alive_state and heart_i.pos_x == 2 and heart_i.pos_y == curr_pos_y:
heart_i.alive_state = False
elif (curr_pos_raw == np.array([0, 2, 3, 3])).all():
enemy_die = True
self.glb_situation[curr_pos_y, 1] = 0
for heart_i in heart:
if heart_i.alive_state and heart_i.pos_x == 1 and heart_i.pos_y == curr_pos_y:
heart_i.alive_state = False
elif (curr_pos_raw == np.array([2, 3, 3, 0])).all():
enemy_die = True
self.glb_situation[curr_pos_y, 0] = 0
for heart_i in heart:
if heart_i.alive_state and heart_i.pos_x == 0 and heart_i.pos_y == curr_pos_y:
heart_i.alive_state = False
if enemy_die == True:
self.glb_situation = np.zeros([4, 4], np.uint8)
for i in range(4):
if heart[i].alive_state:
self.glb_situation[heart[i].pos_y, heart[i].pos_x] = heart[i].id
for i in range(4):
if spade[i].alive_state:
self.glb_situation[spade[i].pos_y, spade[i].pos_x] = spade[i].id
for i in range(4):
print(self.glb_situation[i][:])
print('=' * 12)
def check_game_over(self):
heart_alive_num, spade_alive_num = 0, 0
for heart_i in heart:
if heart_i.alive_state:
heart_alive_num += 1
for spade_i in spade:
if spade_i.alive_state:
spade_alive_num += 1
if heart_alive_num <= 1:
print('Spades win!')
GlobalSituation.__init__(self)
Pointer.__init__(self)
chess_pieces_init()
if spade_alive_num <= 1:
print('Hearts win!')
GlobalSituation.__init__(self)
Pointer.__init__(self)
chess_pieces_init()
heart, spade = [None] * 4, [None] * 4
for i in range(4):
heart[i] = ChessPieces('heart')
spade[i] = ChessPieces('spade')
def chess_pieces_init():
for i in range(4):
heart[i].pos_y, heart[i].pos_x = 0, i
spade[i].pos_y, spade[i].pos_x = 3, i
heart[i].alive_state = True
spade[i].alive_state = True
chess_pieces_init()
pointer = Pointer()
situation = GlobalSituation()
def check_click_item(c_x, c_y):
selected_item = None
if situation.spade_turn==None:
for heart_i in heart:
if heart_i.alive_state and heart_i.rect.collidepoint(c_x, c_y):
situation.spade_turn = False
selected_item = heart_i
for spade_i in spade:
if spade_i.alive_state and spade_i.rect.collidepoint(c_x, c_y):
situation.spade_turn = True
selected_item = spade_i
else:
if situation.spade_turn:
for spade_i in spade:
if spade_i.alive_state and spade_i.rect.collidepoint(c_x, c_y):
selected_item = spade_i
else:
for heart_i in heart:
if heart_i.alive_state and heart_i.rect.collidepoint(c_x, c_y):
selected_item = heart_i
return selected_item
def move_to_dst_pos(selected_item, c_x, c_y):
update_situation = False
enemy_exist = False
if selected_item.name == 'heart':
for spade_i in spade:
if spade_i.rect.collidepoint(c_x, c_y) and spade_i.alive_state:
enemy_exist = True
elif selected_item.name == 'spade':
for heart_i in heart:
if heart_i.rect.collidepoint(c_x, c_y) and heart_i.alive_state:
enemy_exist = True
if enemy_exist == False:
delta_y, delta_x = c_y - selected_item.rect[1], c_x - selected_item.rect[0]
if 80 <= abs(delta_x) <= 120 and abs(delta_y) <= 20:
if delta_x < 0:
if selected_item.pos_x > 0:
selected_item.pos_x -= 1
else:
if selected_item.pos_x < 3:
selected_item.pos_x += 1
update_situation = True
if 80 <= abs(delta_y) <= 120 and abs(delta_x) <= 20:
if delta_y < 0:
if selected_item.pos_y > 0:
selected_item.pos_y -= 1
else:
if selected_item.pos_y < 3:
selected_item.pos_y += 1
update_situation = True
return update_situation
while True:
for event in pg.event.get():
if event.type == pg.QUIT:
sys.exit()
elif event.type == pg.MOUSEBUTTONDOWN:
cursor_x, cursor_y = pg.mouse.get_pos()
clicked_item = check_click_item(cursor_x, cursor_y)
if clicked_item != None:
pointer.selecting_item = True
pointer.point_to(clicked_item)
else:
if pointer.selecting_item:
update_situation_flag = move_to_dst_pos(pointer.pointing_to_item, cursor_x, cursor_y)
if update_situation_flag:
situation.refresh_situation()
situation.check_situation(pointer.pointing_to_item)
situation.check_game_over()
pointer.selecting_item = False
screen.blit(background, (0, 0))
for heart_i in heart:
heart_i.update()
for spade_i in spade:
spade_i.update()
if pointer.selecting_item:
pointer.update()
f_clock.tick(fps)
pg.display.update()
5. Effect display
The above is the detailed content of How to use Python+Pygame to implement the four-chess game. For more information, please follow other related articles on the PHP Chinese website!

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

Forloopsareadvantageousforknowniterationsandsequences,offeringsimplicityandreadability;whileloopsareidealfordynamicconditionsandunknowniterations,providingcontrolovertermination.1)Forloopsareperfectforiteratingoverlists,tuples,orstrings,directlyacces

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
