With the rapid development of the Internet and mobile Internet, servers are facing increasing pressure. How to limit client requests to the server and avoid server crashes has become a big problem. In actual projects, we often need to limit the number of IP requests to ensure the availability of the website.
Here, we will introduce how to use Golang to implement IP current limiting. In general, we will use the token bucket algorithm to implement current limiting based on IP address. The token bucket algorithm is a flow control algorithm that allows a certain number of requests to pass within a certain period of time and limits the request flow within a period of time.
Implementation details
The token bucket algorithm puts tokens into the bucket at a constant rate. The token bucket has a capacity limit, which means that the number of tokens in the bucket will not exceed the capacity. For each request, a token is removed from the bucket. If there is no token in the bucket, the request cannot go through.
In order to implement current limiting based on IP address, we need to create a token bucket for each IP address. Each token bucket has a maximum capacity and a constant speed. When a request comes, we remove a token from the token bucket and reject the request if there is no token in the bucket.
Based on this, we can define an IP current limiter:
type IPRateLimiter struct { limiterBuckets map[string]*rate.Limiter mu *sync.Mutex r rate.Limit b int }
Among them, limiterBuckets is a mapping that maps string IP addresses to token buckets. mu is a mutex, r is the rate at which the rate limiter puts tokens per second, and b is the capacity of the token bucket.
In order to create a token bucket for each IP address, we define a function NewIPRateLimiter:
func NewIPRateLimiter(r rate.Limit, b int) *IPRateLimiter { return &IPRateLimiter{ limiterBuckets: make(map[string]*rate.Limiter), mu: &sync.Mutex{}, r: r, b: b, } } func (i *IPRateLimiter) AddIP(ip string) *rate.Limiter { i.mu.Lock() defer i.mu.Unlock() limiter := rate.NewLimiter(i.r, i.b) i.limiterBuckets[ip] = limiter return limiter }
The AddIP function is used to create a token bucket for the IP address. If a token bucket was created for this IP address, the existing token bucket is returned, otherwise a new token bucket is created and returned.
Finally, we can implement HTTP middleware to limit the number of requests to an IP address:
func (i *IPRateLimiter) Limit(next http.Handler) http.Handler { return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { ip := r.RemoteAddr limiter, ok := i.limiterBuckets[ip] if !ok { limiter = i.AddIP(ip) } if !limiter.Allow() { http.Error(w, http.StatusText(http.StatusTooManyRequests), http.StatusTooManyRequests) return } next.ServeHTTP(w, r) }) }
This middleware allows requests to pass at a specified rate and capacity. If the number of requests exceeds capacity, HTTP error code 429 (Too Many Requests) is returned.
The complete code is as follows:
package main import ( "net/http" "strconv" "sync" "golang.org/x/time/rate" ) type IPRateLimiter struct { limiterBuckets map[string]*rate.Limiter mu *sync.Mutex r rate.Limit b int } func NewIPRateLimiter(r rate.Limit, b int) *IPRateLimiter { return &IPRateLimiter{ limiterBuckets: make(map[string]*rate.Limiter), mu: &sync.Mutex{}, r: r, b: b, } } func (i *IPRateLimiter) AddIP(ip string) *rate.Limiter { i.mu.Lock() defer i.mu.Unlock() limiter := rate.NewLimiter(i.r, i.b) i.limiterBuckets[ip] = limiter return limiter } func (i *IPRateLimiter) Limit(next http.Handler) http.Handler { return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { ip := r.RemoteAddr limiter, ok := i.limiterBuckets[ip] if !ok { limiter = i.AddIP(ip) } if !limiter.Allow() { http.Error(w, http.StatusText(http.StatusTooManyRequests), http.StatusTooManyRequests) return } next.ServeHTTP(w, r) }) } func IndexHandler(w http.ResponseWriter, r *http.Request) { w.Write([]byte("welcome.")) } func main() { limit := rate.Limit(10) // 速率,每秒放入令牌的数量 capacity := 100 // 容量,桶的大小 ipRateLimiter := NewIPRateLimiter(limit, capacity) http.Handle("/", ipRateLimiter.Limit(http.HandlerFunc(IndexHandler))) err := http.ListenAndServe(":8080", nil) if err != nil { panic(err) } }
In this example, we allow 10 tokens per second and limit the bucket capacity to 100. This means that the limiter can handle up to 10 requests per second, but will fail if the requests to the same IP address reach 100. At the same time, we define a simple handler that will respond to "Welcome".
Conclusion
In this article, we use Golang to implement IP current limiting and use the token bucket algorithm to limit the request rate of each IP address. This method can implement a simple and effective current limiting mechanism, and can be easily implemented in Golang. This can be a very useful technique when you are writing highly concurrent network applications.
The above is the detailed content of Golang implements IP current limiting. For more information, please follow other related articles on the PHP Chinese website!

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Reasons for choosing Golang include: 1) high concurrency performance, 2) static type system, 3) garbage collection mechanism, 4) rich standard libraries and ecosystems, which make it an ideal choice for developing efficient and reliable software.

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Golang performs better in compilation time and concurrent processing, while C has more advantages in running speed and memory management. 1.Golang has fast compilation speed and is suitable for rapid development. 2.C runs fast and is suitable for performance-critical applications. 3. Golang is simple and efficient in concurrent processing, suitable for concurrent programming. 4.C Manual memory management provides higher performance, but increases development complexity.

Golang's application in web services and system programming is mainly reflected in its simplicity, efficiency and concurrency. 1) In web services, Golang supports the creation of high-performance web applications and APIs through powerful HTTP libraries and concurrent processing capabilities. 2) In system programming, Golang uses features close to hardware and compatibility with C language to be suitable for operating system development and embedded systems.

Golang and C have their own advantages and disadvantages in performance comparison: 1. Golang is suitable for high concurrency and rapid development, but garbage collection may affect performance; 2.C provides higher performance and hardware control, but has high development complexity. When making a choice, you need to consider project requirements and team skills in a comprehensive way.

Golang is suitable for high-performance and concurrent programming scenarios, while Python is suitable for rapid development and data processing. 1.Golang emphasizes simplicity and efficiency, and is suitable for back-end services and microservices. 2. Python is known for its concise syntax and rich libraries, suitable for data science and machine learning.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Mac version
God-level code editing software (SublimeText3)

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download
The most popular open source editor