1. Signal
Hello everyone, I am my old cousin~
A signal is a way of notification or communication. Signals are divided into sending party and receiver. The sender sends a signal, and the process of the receiver receiving the signal will jump into the signal processing function. After execution, it will jump back to the original position to continue execution.
Common signals in Linux, inputting Ctrl C through the keyboard is to send a signal to the system to tell the system to exit the current process.
The characteristic of a signal is that the sender notifies the subscriber of what happened. Using signals is divided into 3 steps: defining signals, monitoring signals, and sending signals.
#The communication module that provides the signal concept in Python is blinker.
Blinker is a powerful signal library based on Python, which supports both simple point-to-point communication and point-to-multipoint multicast. Flask's signaling mechanism is based on it. Although the kernel of Blinker is small, it is very powerful. It supports the following features:
- Supports registration of global named signals
- Supports anonymous signals
- Supports custom naming Signal
- Supports persistent connections and short-lived connections with the receiver
- Implements automatic disconnection with the receiver through weak references
- Supports sending any size Data
- Supports collecting the return value of the signal receiver
- Thread safety
2. Blinker uses the
installation method:
pip install blinker
2.1 Named signal
from blinker import signal # 定义一个信号 s = signal('king') def animal(args): print('我是小钻风,大王回来了,我要去巡山') # 信号注册一个接收者 s.connect(animal) if "__main__" == __name__: # 发送信号 s.send()
2.2 Anonymous signal
blinker also supports anonymous signals, that is, there is no need to specify a specific signal value. Each anonymous signal created is independent of each other.
from blinker import Signal s = Signal() def animal(sender): print('我是小钻风,大王回来了,我要去巡山') s.connect(animal) if "__main__" == __name__: s.send()
2.3 Multicast signal
Multicast signal is a characteristic that can better reflect the advantages of signals. Multiple receivers are registered to the signal, and the sender only needs to send once to deliver information to multiple receivers.
from blinker import signal s = signal('king') def animal_one(args): print(f'我是小钻风,今天的口号是: {args}') def animal_two(args): print(f'我是大钻风,今天的口号是: {args}') s.connect(animal_one) s.connect(animal_two) if "__main__" == __name__: s.send('大王叫我来巡山,抓个和尚做晚餐!')
2.4 The receiver subscribes to the topic
The receiver supports subscribing to the specified topic, and only when the specified topic sends a message, it is sent to the receiver. This method distinguishes different topics well.
from blinker import signal s = signal('king') def animal(args): print(f'我是小钻风,{args} 是我大哥') s.connect(animal, sender='大象') if "__main__" == __name__: for i in ['狮子', '大象', '大鹏']: s.send(i)
2.5 Decorator Usage
In addition to function registration, there is a simpler signal registration method, that is, decorator.
from blinker import signal s = signal('king') @s.connect def animal_one(args): print(f'我是小钻风,今天的口号是: {args}') @s.connect def animal_two(args): print(f'我是大钻风,今天的口号是: {args}') if "__main__" == __name__: s.send('大王叫我来巡山,抓个和尚做晚餐!')
2.6 Decorators that can subscribe to topics
Connect's registration method has a drawback when using decorators, which is that it cannot subscribe to topics, so there is a more advanced connect_via method that supports subscribing to topics.
from blinker import signal s = signal('king') @s.connect_via('大象') def animal(args): print(f'我是小钻风,{args} 是我大哥') if "__main__" == __name__: for i in ['狮子', '大象', '大鹏']: s.send(i)
2.7 Check whether there is a receiver for the signal
If it takes a long time for a sender to prepare before sending a message, in order to avoid the waste of performance caused by no receiver, you can first Check whether there is a receiver for a certain signal, and only send it when it is confirmed that there is a receiver, so as to be accurate.
from blinker import signal s = signal('king') q = signal('queue') def animal(sender): print('我是小钻风,大王回来了,我要去巡山') s.connect(animal) if "__main__" == __name__: res = s.receivers print(res) if res: s.send() res = q.receivers print(res) if res: q.send() else: print("孩儿们都出去巡山了")
{4511880240: <weakref at 0x10d02ae80; to 'function' at 0x10cedd430 (animal)>} 我是小钻风,大王回来了,我要去巡山 {} 孩儿们都出去巡山了
2.8 Check whether the subscriber is subscribed to a certain signal
You can also check whether the subscriber is subscribed to a certain signal
from blinker import signal s = signal('king') q = signal('queue') def animal(sender): print('我是小钻风,大王回来了,我要去巡山') s.connect(animal) if "__main__" == __name__: res = s.has_receivers_for(animal) print(res) res = q.has_receivers_for(animal) print(res)
True False
3. Flask signal based on blinker
Flask integrates blinker as a solution for decoupled applications. In Flask, the usage scenarios of signals are as follows: before the request arrives and after the request ends. At the same time, Flask also supports custom signals.
3.1 Simple Flask demo
from flask import Flask app = Flask(__name__) @app.route('/',methods=['GET','POST'],endpoint='index') def index(): return 'hello blinker' if __name__ == '__main__': app.run()
When accessing 127.0.0.1:5000, return hello blinker to the browser.
3.2 Custom signals
Because Flask integrates signals, they are imported from Flask when using signals in Flask.
from flask import Flask from flask.signals import _signals app = Flask(__name__) s = _signals.singal('msg') def QQ(args): print('you have msg from QQ') s.connect(QQ) @app.route('/',methods=['GET','POST'],endpoint='index') def index(): s.send() return 'hello blinker' if __name__ == '__main__': app.run()
3.3 Flask’s own signals
In addition to customizing signals, you can also use built-in signals in Flask. There are many kinds of signals that come with Flask, as follows:
请求 request_started = _signals.signal('request-started')# 请求到来前执行 request_finished = _signals.signal('request-finished')# 请求结束后执行 模板渲染 before_render_template = _signals.signal('before-render-template')# 模板渲染前执行 template_rendered = _signals.signal('template-rendered')# 模板渲染后执行 请求执行 got_request_exception = _signals.signal('got-request-exception')# 请求执行出现异常时执行 request_tearing_down = _signals.signal('request-tearing-down')# 请求执行完毕后自动执行(无论成功与否) appcontext_tearing_down = _signals.signal('appcontext-tearing-down') # 请求上下文执行完毕后自动执行(无论成功与否) 请求上下文中 appcontext_pushed = _signals.signal('appcontext-pushed')# 请求上下文push时执行 appcontext_popped = _signals.signal('appcontext-popped')# 请求上下文pop时执行 message_flashed = _signals.signal('message-flashed')# 调用flask在其中添加数据时,自动触发
The following takes before the request arrives as an example to see how to use signals in Flask
from flask import Flask from flask.signals import _signals, request_started import time app = Flask(__name__) def wechat(args): print('you have msg from wechat') # 从flask中引入已经定好的信号,注册一个函数 request_started.connect(wechat) @app.route('/',methods=['GET','POST'],endpoint='index') def index(): return 'hello blinker' if __name__ == '__main__': app.run()
When a request arrives, Flask will go through request_started Notifying the recipient is the function wechat. At this time, the wechat function is executed first and then returns the result to the browser.
But this method of use is not very authentic, because signals do not support asynchronous methods, so usually the receivers of signals in production environments are frameworks configured for asynchronous execution, such as the famous asynchronous framework celery in Python.
4. Summary
Advantages of signals:
- Decoupled applications: Decompose serially running coupled applications into multi-level execution
- Publish Subscribers: Reduce the use of callers, notify multiple subscribers with one call
Disadvantages of signals:
- Does not support asynchronous
- Supports subscriptions The theme's capacity is limited
Every like, view, message, and retweet of yours is very important to me, thank you for your support.
Okay, see you next time. I love cats, technology, and Sisi’s old cousin even more⁽⁽ଘ( ˙꒳˙ )ଓ⁾⁾
The above is the detailed content of Python's powerful signal library: blinker. For more information, please follow other related articles on the PHP Chinese website!

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Mac version
God-level code editing software (SublimeText3)

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6
Visual web development tools