


Giving robots a 3D understanding of everyday objects is a major challenge in robotics applications.
When exploring in an unknown environment, existing object pose estimation methods are still unsatisfactory due to the diversity of object shapes.
Recently, researchers from Zhejiang University, ByteDance Artificial Intelligence Laboratory and the Chinese University of Hong Kong jointly proposed a new framework for Category-level object shape and pose estimation from a single RGB-D image.
##Paper address: https://arxiv.org/abs/2210.01112
Project link: https://zju3dv.github.io/gCasp
In order to handle the shape changes of objects within categories, researchers Adopting a semantic primitive representation to encode different shapes into a unified latent space, this representation is the key to establishing reliable correspondence between observed point clouds and estimated shapes.
Then by designing a shape descriptor that is invariant to rigid body similarity transformation, the shape and pose estimation of the object are decoupled, thereby supporting any pose. Implicit shape optimization of target objects. Experiments show that the proposed method achieves leading pose estimation performance in public datasets.
Research backgroundIn the field of robot perception and operation, estimating the shape and pose of daily objects is a basic function and has a variety of applications, including 3D scene understanding, robotic operations and autonomous warehousing.
Early work on this task mostly focused on instance-level pose estimation, which mainly obtains the object pose by aligning the observed object with a given CAD model.
However, such a setup is limited in real-world scenarios because it is difficult to obtain an exact model of any given object in advance.
To generalize to unseen but semantically familiar objects, category-level object pose estimation is attracting increasing research attention because it can potentially handle real Various instances of the same category in the scene.
#Existing class-level pose estimation methods usually try to predict the pixel-level normalized coordinates of instances in a class, or use deformed Refer to the prior model to estimate the object pose.
Although these works have made great progress, these one-shot prediction methods still face difficulties when there are large shape differences in the same category.
In order to handle the diversity of objects within the same category, some works utilize neural implicit representation to adapt to the shape of the target object by iteratively optimizing the pose and shape in the implicit space, and Better performance was obtained.
There are two main challenges in class-level object pose estimation. One is the huge intra-class shape difference, and the other is the existing methods that couple shape and pose together. Optimization can easily lead to more complex optimization problems.
In this paper, researchers decouple the shape and pose estimation of objects by designing a shape descriptor that is invariant to rigid body similarity transformations, thereby supporting arbitrary poses Implicit shape optimization of target objects. Finally, the scale and pose of the object are solved based on the semantic association between the estimated shape and the observation.
Algorithm introductionThe algorithm consists of three modules, Semantic primitive extraction, Generative shape estimationandObject pose estimation.
The input of the algorithm is a single RGB-D image. The algorithm uses the pre-trained Mask R-CNN to obtain the semantic segmentation results of the RGB image, and then back-projects the point cloud of each object based on the camera internal parameters. This method mainly processes point clouds and finally obtains the scale and 6DoF pose of each object.
Semantic primitive extraction
DualSDF[1] proposes a representation method of semantic primitives for similar objects. As shown on the left side of the figure below, in the same type of object, each instance is divided into a certain number of semantic primitives, and the label of each primitive corresponds to a specific part of a certain type of object.
In order to extract the semantic primitives of objects from the observation point cloud, the author utilizes a point cloud segmentation network to segment the observation point cloud into semantic primitives with labels.
Generative shape estimation
3D generative model (such as DeepSDF) mostly operates in a normalized coordinate system.
However, there will be a similar pose transformation (rotation, translation and scale) between the object in the real world observation and the normalized coordinate system.
In order to solve the normalized shape corresponding to the current observation when the pose is unknown, the author proposes a shape descriptor that is invariant to similar transformations based on semantic primitive representation.
This descriptor is shown in the figure below, which describes the angle between vectors composed of different primitives:
The author uses this descriptor to measure the error between the current observation and the estimated shape, and uses gradient descent to make the estimated shape more consistent with the observation. The process is shown in the figure below.
The author also shows more shape optimization examples.
Pose estimation
Finally, by observing the point cloud and solving the semantic origin between the shapes Based on the language correspondence, the author uses the Umeyama algorithm to solve the pose of the observed shape.
Experimental results
The author is on the REAL275 (real data set) and CAMERA25 (synthetic data set) data sets provided by NOCS Comparative experiments were conducted to compare the pose estimation accuracy with other methods. The proposed method far exceeded other methods in multiple indicators.
At the same time, the author also compared the amount of parameters that need to be trained on the training set provided by NOCS. The author requires a minimum of 2.3M parameters to reach the state-of-the-art level.
The above is the detailed content of Only 10% of the parameters are needed to surpass SOTA! Zhejiang University, Byte, and Hong Kong Chinese jointly proposed a new framework for the 'category-level pose estimation' task. For more information, please follow other related articles on the PHP Chinese website!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version
Recommended: Win version, supports code prompts!

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
