Home  >  Article  >  Technology peripherals  >  Create your own interactive events - screen gesture recognition

Create your own interactive events - screen gesture recognition

WBOY
WBOYforward
2023-04-14 19:37:011263browse

This article is an article from a member of the Byte Education-Adult and Innovation Front-end Team and has been authorized by ELab to publish.

TLDR

This article uses machine learning, cosine similarity determination method and other methods to design and verify a mouse gesture recognition scheme, and attempts to extend the scheme to three-dimensional space.

Background

The core content of terminal technology is to directly respond to user interaction. The basic logic is that there are some predefined interaction events under a specific platform, and the user's specific interaction actions will trigger the corresponding interaction events. The entire user product interaction design is also based on this. In order to achieve a good user experience, convenient interaction is necessary.

In the PC scenario, the mouse (trackpad) is the most important input device besides the keyboard. The common mouse operations are the buttons and wheel on the mouse, so the corresponding common interaction event is click. , scrolling, dragging, and these interactions require an object (such as clicking a button, scrolling a content area or the entire viewport, dragging a picture), and are not as convenient as shortcut keys. However, in certain scenarios, shortcut keys are not as convenient as the mouse, so we expect the mouse to also have shortcut operations. Mouse gestures are a relatively niche but convenient and easy-to-use shortcut operation. Common mouse gestures include drawing straight lines, ticking, and drawing circles. In the early days when hundreds of browsers were flourishing, many domestic browsers used convenient mouse gesture operations as a major selling point in order to differentiate their competitive advantages. At that time, gesture operations gradually gained widespread support and application, quietly cultivating the market. and user habits.

In mobile touch screen scenarios, the advantages of gesture operations are more obvious. Gesture operations have evolved into the classic "swipe left to go back", "swipe right to go forward", "swipe up to return to the homepage", and "swipe down to refresh" /Invoke Notifications/Invoke Control Center".

With the recent rise of VR/AR/MR, gesture operations in three-dimensional space have been further promoted and applied.

Therefore, we take the PC side as an example to realize the recognition of mouse gestures, clarify the core implementation logic of interactive gestures, and by analogy, try to extend the solution to more terminal scenarios.

Goal

  • Core logic implementation: realize the recording and recognition of mouse gestures. For mouse gestures, we stipulate some prerequisites:

Translation and zooming are not deformed, that is, the overall position and size of the gesture path are not important.

It has a certain degree of tolerance for users’ repeated gestures.

  • Engineering encapsulation: Solidify it into a custom event, which can be monitored through addEventListener, thereby expanding the diversity of interactions and improving the convenience of development.
  • Product-based experience: Allow users to add their own custom gestures.
  • Solution: Dimension expansion: Expand the currently explored solution to three-dimensional space.

Problem Analysis

The special aspect of this problem lies in the handling of uncertainty. There is uncertainty in the mouse gestures drawn by the user.

For the case where a standard path is preset, the problem is transformed into detecting the similarity between the "preset deterministic path" and the "user-input uncertain path".

For the case of user-defined paths, the problem is transformed into detecting the similarity between "the path of uncertainty set by the user" and "the path of uncertainty entered by the user".

If you follow the traditional programming model, you must require rigorous program logic, set clear rules for conditional judgments, and accurately measure this uncertainty. That is to say, a "magic operation" is needed. Substituting the two paths, you can get the result of whether they are similar.

As for the gesture itself, we can think of it as an ordinary raster image or as a vector graphic. For raster images, we can use classic machine learning methods to determine the classification of the image without having to understand the content of the image. For vector graphics, we need to define a special data structure for this and delve into the representation of the similarity of graphics. Our next implementation will start from these two ideas.

Implementation plan

​Using machine learning​

Basic idea

First of all, you need to change your way of thinking. Machine learning programming is completely different from traditional programming thinking. As mentioned just now, traditional programming requires that program logic such as conditional judgments, loops and other processes must be accurately specified and coded manually. Machine learning programming no longer sticks to formulating and writing detailed logic rules, but builds neural networks to let the computer learn features.

The key to machine learning is a large and reliable data set. This labeling work is very time-consuming. In order to verify the feasibility, we use the similar handwritten digit data set mnist to replace the real gesture scene.

So, our next steps are:

  • Choose an appropriate machine learning model based on the characteristics of the problem.
  • Choose a machine learning framework based on ease of use.
  • Train the model and get the model file.
  • Deploy and run the model and draw conclusions.

Model selection

There are many algorithms and models for machine learning, and they need to be selected for different fields. Tensorflow.js officially provides a series of pre-trained models [1], which can be used directly or retrained and used.

Create your own interactive events - screen gesture recognition

Convolutional Neural Networks (CNN) are widely used machine learning models, especially when processing pictures or other data with raster characteristics. Performance. During information processing, CNN takes the spatial structure of rows and columns of pixels as input, extracts features through multiple mathematical calculation layers, and then converts the signal into a feature vector and connects it to the structure of a traditional neural network. After feature extraction, the image The corresponding feature vector is smaller when provided to a traditional neural network, and the number of parameters that need to be trained will be reduced accordingly. The basic working principle diagram of the convolutional neural network is as follows (the number of each layer in the diagram can be designed as needed):

Create your own interactive events - screen gesture recognition

Framework selection

Tensorflow.js framework The reason why it becomes our preferred framework is because of the following advantages:

Good portability: Tensorflow.js is not the most popular and efficient machine learning framework, but because it is based on JS and ready to use out of the box API is used, so it is convenient to run and deploy on various terminals that support JS.

Low latency and high privacy: Thanks to the fact that it can run completely on the end, there is no need to send verification data to the server and wait for the server to respond, thus having the advantages of low latency and high security.

Low learning/debugging cost: The cost of getting started is low for WEB developers, and the browser can well visualize the machine training process.

The environment setup of TFJS [2] is very simple and will be omitted here.

Model training

You can experience the idea of ​​machine learning programming through this simple example and get acquainted with the API of Tensorflow.js.

Dataset

 /** * @license* Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ 
 const IMAGE_SIZE = 784;
 const NUM_CLASSES = 10;
 const NUM_DATASET_ELEMENTS = 65000;
 
 const NUM_TRAIN_ELEMENTS = 55000;
 const NUM_TEST_ELEMENTS = NUM_DATASET_ELEMENTS - NUM_TRAIN_ELEMENTS;
 
 const MNIST_IMAGES_SPRITE_PATH =
 'https://storage.googleapis.com/learnjs-data/model-builder/mnist_images.png';
 const MNIST_LABELS_PATH =
 'https://storage.googleapis.com/learnjs-data/model-builder/mnist_labels_uint8';
 
 /** * A class that fetches the sprited MNIST dataset and returns shuffled batches. * * NOTE: This will get much easier. For now, we do data fetching and * manipulation manually. */export class MnistData {
 constructor() {
 this.shuffledTrainIndex = 0;
 this.shuffledTestIndex = 0;
 }
 
 async load() {
 // Make a request for the MNIST sprited image.const img = new Image();
 const canvas = document.createElement('canvas');
 const ctx = canvas.getContext('2d');
 const imgRequest = new Promise((resolve, reject) => {
 img.crossOrigin = '';
 img.onload = () => {
 img.width = img.naturalWidth;
 img.height = img.naturalHeight;
 
 const datasetBytesBuffer =
 new ArrayBuffer(NUM_DATASET_ELEMENTS * IMAGE_SIZE * 4);
 
 const chunkSize = 5000;
 canvas.width = img.width;
 canvas.height = chunkSize;
 
 for (let i = 0; i < NUM_DATASET_ELEMENTS / chunkSize; i++) {
 const datasetBytesView = new Float32Array(
 datasetBytesBuffer, i * IMAGE_SIZE * chunkSize * 4,
 IMAGE_SIZE * chunkSize);
 ctx.drawImage(
 img, 0, i * chunkSize, img.width, chunkSize, 0, 0, img.width,
 chunkSize);
 
 const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
 
 for (let j = 0; j < imageData.data.length / 4; j++) {
 // All channels hold an equal value since the image is grayscale, so// just read the red channel.datasetBytesView[j] = imageData.data[j * 4] / 255;
 }
 }
 this.datasetImages = new Float32Array(datasetBytesBuffer);
 
 resolve();
 };
 img.src = MNIST_IMAGES_SPRITE_PATH;
 });
 
 const labelsRequest = fetch(MNIST_LABELS_PATH);
 const [imgResponse, labelsResponse] =
 await Promise.all([imgRequest, labelsRequest]);
 
 this.datasetLabels = new Uint8Array(await labelsResponse.arrayBuffer());
 
 // Create shuffled indices into the train/test set for when we select a// random dataset element for training / validation.this.trainIndices = tf.util.createShuffledIndices(NUM_TRAIN_ELEMENTS);
 this.testIndices = tf.util.createShuffledIndices(NUM_TEST_ELEMENTS);
 
 // Slice the the images and labels into train and test sets.this.trainImages =
 this.datasetImages.slice(0, IMAGE_SIZE * NUM_TRAIN_ELEMENTS);
 this.testImages = this.datasetImages.slice(IMAGE_SIZE * NUM_TRAIN_ELEMENTS);
 this.trainLabels =
 this.datasetLabels.slice(0, NUM_CLASSES * NUM_TRAIN_ELEMENTS);
 this.testLabels =
 this.datasetLabels.slice(NUM_CLASSES * NUM_TRAIN_ELEMENTS);
 }
 
 nextTrainBatch(batchSize) {
 return this.nextBatch(
 batchSize, [this.trainImages, this.trainLabels], () => {
 this.shuffledTrainIndex =
 (this.shuffledTrainIndex + 1) % this.trainIndices.length;
 return this.trainIndices[this.shuffledTrainIndex];
 });
 }
 
 nextTestBatch(batchSize) {
 return this.nextBatch(batchSize, [this.testImages, this.testLabels], () => {
 this.shuffledTestIndex =
 (this.shuffledTestIndex + 1) % this.testIndices.length;
 return this.testIndices[this.shuffledTestIndex];
 });
 }
 
 nextBatch(batchSize, data, index) {
 const batchImagesArray = new Float32Array(batchSize * IMAGE_SIZE);
 const batchLabelsArray = new Uint8Array(batchSize * NUM_CLASSES);
 
 for (let i = 0; i < batchSize; i++) {
 const idx = index();
 
 const image =
 data[0].slice(idx * IMAGE_SIZE, idx * IMAGE_SIZE + IMAGE_SIZE);
 batchImagesArray.set(image, i * IMAGE_SIZE);
 
 const label =
 data[1].slice(idx * NUM_CLASSES, idx * NUM_CLASSES + NUM_CLASSES);
 batchLabelsArray.set(label, i * NUM_CLASSES);
 }
 
 const xs = tf.tensor2d(batchImagesArray, [batchSize, IMAGE_SIZE]);
 const labels = tf.tensor2d(batchLabelsArray, [batchSize, NUM_CLASSES]);
 
 return {xs, labels};
 }
 }
 // 我们直接使用mnist数据集这个经典的手写数字数据集,节约了收集手写数字的Create your own interactive events - screen gesture recognition集的时间
import {MnistData} from './data.js';

let cnnModel=null;

async function run() {
// 加载数据集 const data = new MnistData();
await data.load();
// 构造模型,设置模型参数 cnnModel = getModel();
// 训练模型 await train(cnnModel, data);
}

function getModel() {
const model = tf.sequential();

const IMAGE_WIDTH = 28;
const IMAGE_HEIGHT = 28;
const IMAGE_CHANNELS = 1;

// 在第一层,指定输入数据的形状,设置卷积参数 model.add(tf.layers.conv2d({
// 流入模型第一层的数据的形状。在本例中,我们的 MNIST 示例是 28x28 像素的黑白Create your own interactive events - screen gesture recognition。Create your own interactive events - screen gesture recognition数据的规范格式为 [row, column, depth] inputShape: [IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_CHANNELS],
// 要应用于输入数据的滑动卷积过滤器窗口的尺寸。在此示例中,我们将kernelSize设置成5,也就是指定 5x5 的卷积窗口。 kernelSize: 5,
// 尺寸为 kernelSize 的过滤器窗口数量 filters: 8,
// 滑动窗口的步长,即每次移动Create your own interactive events - screen gesture recognition时过滤器都会移动多少像素。我们指定步长为 1,表示过滤器将以 1 像素为步长在Create your own interactive events - screen gesture recognition上滑动。 strides: 1,
// 卷积完成后应用于数据的激活函数。在本例中,我们将应用修正线性单元 (ReLU) 函数,这是机器学习模型中非常常见的激活函数。 activation: 'relu',
// 通常使用 VarianceScaling作为随机初始化模型权重的方法 kernelInitializer: 'varianceScaling'
}));

// MaxPooling最大池化层使用区域最大值而不是平均值进行降采样 model.add(tf.layers.maxPooling2d({poolSize: [2, 2], strides: [2, 2]}));

// 重复一遍conv2d + maxPooling // 注意这次卷积的过滤器窗口数量更多 model.add(tf.layers.conv2d({
kernelSize: 5,
filters: 16,
strides: 1,
activation: 'relu',
kernelInitializer: 'varianceScaling'
}));
model.add(tf.layers.maxPooling2d({poolSize: [2, 2], strides: [2, 2]}));

// 现在我们将2维滤波器的输出展平为1维向量,作为最后一层的输入。这是将高维数据输入给最后的分类输出层时的常见做法。 // Create your own interactive events - screen gesture recognition是高维数据,而卷积运算往往会增大传入其中的数据的大小。在将数据传递到最终分类层之前,我们需要将数据展平为一个长数组。密集层(我们会用作最终层)只需要采用 tensor1d,因而此步骤在许多分类任务中很常见。 // 注意:展平层中没有权重。它只是将其输入展开为一个长数组。 model.add(tf.layers.flatten());

// 计算我们的最终概率分布,我们将使用密集层计算10个可能的类的概率分布,其中得分最高的类将是预测的数字。 const NUM_OUTPUT_CLASSES = 10;
model.add(tf.layers.dense({
units: NUM_OUTPUT_CLASSES,
kernelInitializer: 'varianceScaling',
activation: 'softmax'
}));

// 模型编译,选择优化器,损失函数categoricalCrossentropy,和精度指标accuracy(正确预测在所有预测中所占的百分比),然后编译并返回模型 const optimizer = tf.train.adam();
model.compile({
optimizer: optimizer,
loss: 'categoricalCrossentropy',
metrics: ['accuracy'],
});

return model;
}

// 我们的目标是训练一个模型,该模型会获取一张Create your own interactive events - screen gesture recognition,然后学习预测Create your own interactive events - screen gesture recognition可能所属的 10 个类中每个类的得分(数字 0-9)。 async function train(model, data) {
const metrics = ['loss', 'val_loss', 'acc', 'val_acc'];
const container = {
name: 'Model Training', tab: 'Model', styles: { height: '1000px' }
};
const fitCallbacks = tfvis.show.fitCallbacks(container, metrics);

const BATCH_SIZE = 512;
const TRAIN_DATA_SIZE = 5500;
const TEST_DATA_SIZE = 1000;

const [trainXs, trainYs] = tf.tidy(() => {
const d = data.nextTrainBatch(TRAIN_DATA_SIZE);
return [
d.xs.reshape([TRAIN_DATA_SIZE, 28, 28, 1]),
d.labels
];
});

const [testXs, testYs] = tf.tidy(() => {
const d = data.nextTestBatch(TEST_DATA_SIZE);
return [
d.xs.reshape([TEST_DATA_SIZE, 28, 28, 1]),
d.labels
];
});
// 设置特征和标签 return model.fit(trainXs, trainYs, {
batchSize: BATCH_SIZE,
validationData: [testXs, testYs],
epochs: 10, //训练轮次 shuffle: true,
callbacks: fitCallbacks
});
}

Model deployment and operation

 // 预测canvas上画的图形属于哪个分类 function predict(){
const input = tf.tidy(() => {
return tf.image
.resizeBilinear(tf.browser.fromPixels(canvas), [28, 28], true)
.slice([0, 0, 0], [28, 28, 1])
.toFloat()
.div(255)
.reshape([1, 28, 28, 1]);
});
const pred = cnnModel.predict(input).argMax(1);
console.log('预测结果为', pred.dataSync())
alert(`预测结果为 ${pred.dataSync()[0]}`);
};

document.getElementById('predict-btn').addEventListener('click', predict)
document.getElementById('clear-btn').addEventListener('click', clear)
document.addEventListener('DOMContentLoaded', run);

const canvas = document.querySelector('canvas');
canvas.addEventListener('mousemove', (e) => {
if (e.buttons === 1) {
const ctx = canvas.getContext('2d');
ctx.fillStyle = 'rgb(255,255,255)';
ctx.fillRect(e.offsetX, e.offsetY, 10, 10);
}
});

function clear(){
const ctx = canvas.getContext('2d');
ctx.fillStyle = 'rgb(0,0,0)';
ctx.fillRect(0, 0, 300, 300);
};

clear();

Program evaluation

The advantage of this program is that the data involved in training The larger the set, the better the prediction effect. Its disadvantages are also obvious. First, the construction of the training data set and the verification data set is a huge amount of work. Furthermore, although training can be performed while the browser is running, it is still time-consuming. In summary, this solution can detect several predefined gestures, but it is difficult to train a model that can recognize the user's specific gestures through several user gesture inputs.

Other questions

Can the OCR method for handwriting recognition be used to recognize user-defined gestures?

Due to the uncertainty of user input, the gestures input by the user do not necessarily correspond to a specific predefined category. Can image classification determine "other" categories?

Is the format of tensorflow model related to the framework language? For example, can the model trained by python still be used in tensorflow.js?

Using geometric analysis method​

Basic idea

What is picked up from the mouse interaction is the path information. Through this path information we can extract the position, shape, and direction. Wait for more specific information. Therefore, we can record the space-time trajectory of the mouse, and then use rules to summarize the characteristics of the gesture path, solidify it into a pattern that can uniquely identify the gesture with a high probability, and then compare the similarity between the gesture pattern and ordinary gestures. Note that when defining the path data structure, you need to consider avoiding the effects of size and slight deformation.

Extraction and recording of path features

First, the gesture path drawn by the user must be represented. We clarify a basic principle that objects with the same shape but different sizes should be considered the same gesture. The gesture path needs to be represented by a set of unit vectors. In Stroke, the gesture graphic is divided into 128 vectors, and each vector is converted into a unit vector. In this way, even if the size and length of the gesture paths are different, as long as they are structurally the same, the data representing them will be the same. This eliminates the influence of path size and slight deformation on the judgment results.

Representation of path feature similarity

Then, the similarity of the measured path is converted into the similarity of the measured vector data. The similarity between paths is determined by the specific value of a geometric quantity, so we found cosine similarity from the classic method of calculating vector similarity.

向量的相似度通常使用余弦相似度来度量,即计算向量夹角的余弦值。将两组数据两两对应,分成128组向量,每组2个,计算每组向量的余弦值并累加。最终得到的结果应该会在 [-128, 128] 之间,数值越大也就表示相似度越高。我们只需设置一个阈值,超过这个阈值的就认为匹配成功。

为了计算两个向量夹角的余弦值,引入向量的点乘,根据向量点乘公式(推导过程[3]):

Create your own interactive events - screen gesture recognition

这里|a|表示向量a的模(长度),θ表示两个向量之间的夹角。

两个互相垂直的向量的点积总是零。若向量a和b都是单位向量(长度为1),它们的点积就是它们的夹角的余弦。那么,给定两个向量,它们之间的夹角可以通过下列公式得到:

Create your own interactive events - screen gesture recognition

这个运算可以简单地理解为:在点积运算中,第一个向量投影到第二个向量上(这里,向量的顺序是不重要的,点积运算是可交换的),然后通过除以它们的标量长度来“标准化”。这样,这个分数一定是小于等于1的,可以简单地转化成一个角度值。

对于二维向量,我们用一个[number, number]元组来表示。

核心实现逻辑:

import { useEffect, useState, useRef, useMemo } from 'react'
import throttle from "lodash/throttle"

type Position = {x:number, y:number};
type Vector = [number, number];

// 预先定义特殊V字型的手势路径,便于调试。 const shapeVectors_v: Vector[] = [[5,16],[13,29],[4,9],[6,9],[8,8],[1,0],[1,0],[1,-2],[0,-3],[7,-11],[21,-34],[10,-19]];
const shapeVectors_l: Vector[] = [[0,15],[0,33],[0,19],[0,4],[0,3],[0,8],[2,6],[11,0],[28,0],[18,0],[5,0],[1,0]]
const shapeVectors_6: Vector[] = [[-41,18],[-40,33],[-30,39],[-24,62],[1,53],[40,27],[38,2],[30,-34],[7,-41],[-31,-21],[-38,-4],[-19,0]];
const shapeVectors: {[key:string]: Vector[]} = {
v: shapeVectors_v,
l: shapeVectors_l,
6: shapeVectors_6
}

function Gesture(){
const pointsRef = useRef<Position[]>([]);
const sparsedPointsRef = useRef<Position[]>([]);
const vectorsRef = useRef<Vector[]>([]);

const canvasContextRef = useRef<CanvasRenderingContext2D>()
const containerRef = useRef<HTMLDivElement>(null)

const [predictResults, setPredictResults] = useState<{label: string, similarity: number}[]>([])

// 按一定的时间间隔采集点 const handleMouseMoveThrottled = useMemo(()=>{return throttle(handleMouseMove, 16)}, [canvasContextRef.current])

useEffect(()=>{
const canvasEle = document.getElementById('canvas-ele') as HTMLCanvasElement;
const ctx = canvasEle.getContext('2d')!;
canvasContextRef.current=ctx;
handleClear();
}, [])

function handleMouseDown(){
containerRef?.current?.addEventListener('mousemove', handleMouseMoveThrottled);
}

function handleMouseUp(){
console.log('up')
containerRef?.current?.removeEventListener('mousemove', handleMouseMoveThrottled);
console.log('points', sparsedPointsRef.current)
console.log('vectors', JSON.stringify(vectorsRef.current))
pointsRef.current=[]
}

// 为了方便示意,我们把鼠标路径可视化出来。 function drawPoint(x:number,y:number){
// console.log(x, y) // canvasContext?.arc(x, y, 5, 0, Math.PI*2); (canvasContextRef.current!).fillStyle = 'red';
canvasContextRef.current?.fillRect(x, y, 10,10)
}

// 鼠标滑过时,记录下一串间隔的点。 function handleMouseMove(e: any){
const x:number = e.offsetX, y:number = e.offsetY;
drawPoint(x, y)
const newPoints = [...pointsRef.current, {x,y}];
pointsRef.current = newPoints;
const sparsedNewPoints = sparsePoints(newPoints);
sparsedPointsRef.current=sparsedNewPoints;
const vectors = points2Vectors(sparsedNewPoints)
vectorsRef.current = vectors;
console.log('points', x, y)
// const angles = vectors.map(vector2PolarAngle) // console.log('angles', angles[angles.length-1]) }

// 如果点太多,处理起来性能不佳,除了节流之外,我们始终将点抽稀到13个(我们假设每个手势的持续时间都不低于200ms,能保证在节流16ms的情况下,至少收集到13个原始点,这样抽稀才有意义) // 抽稀的策略是以固定的间隔平均抽,这样有个潜在问题:如果用户划手势时速度不够均匀,比如在同一个手势路径中某段时间划的速度比较快(点会比较密集),在某段时间的速度比较慢(点会比较稀疏),那由抽稀后的点构造出的路径向量就会比较失真,影响最终判断的准确性。 // 优化的方案是在空间上采用分区抽稀的策略,避免用户手速不均匀导致的问题,但分区逻辑比较复杂,我们暂且按下不做深入研究。 // todo: 抽稀后,相邻的点不能重复,否则会有0向量、对运算和判断造成干扰。 function sparsePoints(points: Position[]){
const sparsedLength = 13;
if(points.length<=sparsedLength){
return points;
}else{
let sparsedPoints = [];
let step = points.length/sparsedLength;
for(let i=0; i<sparsedLength; i++){
const curIndex = Math.round(step*i);
sparsedPoints.push(points[curIndex])
}
return sparsedPoints;
}
}

// 对于非闭合的路径,手势方向会影响判断逻辑,相同的路径可能是由相反的手势方向画出来的。比如L形的手势。 // 对于闭合的路径,手势的方向和起止位置都会影响判断逻辑,相同的路径可能是由相反的手势方向画出来的,也可能是由不同起始位置画出来的。比如圆形的手势。 // 为了消除相同路径不同画法的影响,我们做如下处理 
function normalizePoints(points:Position[]){
// if (是闭合路径) 将位置在最左上角的点作为数组的第一位,其余的依次排列,然后返回 // else 原样返回 return points;
}

// 相邻的两个点相连,生成一个向量。用这n个点的坐标生成n-1个向量,这n-1个向量组成一段路径,用来表示一个鼠标手势。 function points2Vectors(points: Position[]){
if(points.length<=1){
return []
}else{
return points.reduce((pre:Vector[], cur, curIdx)=>{
if(curIdx===0){return []}
const prePoint = points[curIdx-1];
const vec:Vector = [cur.x-prePoint.x, cur.y-prePoint.y];
return [...pre, vec];
}, [])
}
}

// 判断两条路径是否是相同,保证组成两条路径的向量数相同,然后计算两条路径对应向量的余弦相似度(取值在-1~1之间,越接近-1或者1,越相似)。最后再与定义的阈值比较,超过阈值就认为路径相同。 function judge(vec1:Vector[], vec2: Vector[], threshold?:number){
// 暂定阈值为0.5 const finalThreshold = threshold||0.5;
// 为消除路径方向的影响(一个向量与另一个反向相反的向量的余弦值是-1,应该认为它们形状相同),反转路径后再次判断 return cosineSimilarity(vec1, vec2)>=finalThreshold || cosineSimilarity(vec1, vec2.reverse())>=finalThreshold
}

// 两组向量的余弦相似度,保证组成两条路径的向量数相同,然后计算两条路径对应向量的余弦值,累加取均值.取值在-1~1之间,越接近-1或者1,越相似. function cosineSimilarity(vec1: Vector[], vec2: Vector[]){
if(vec1.length!==vec2.length){
console.warn('进行比较的两个路径长度(路径内的向量数)必须一致')
return 0;
}else{
let cosValueSum = 0;
vec1.forEach((v1, i)=>{
cosValueSum+=vectorsCos(v1, vec2[i])
})
// 取余弦值的绝对值,绝对值越接近1,相似度越高。 const cosValueRate = Math.abs(cosValueSum/vec1.length);
console.log('cosValueRate', cosValueRate)
return cosValueRate;
}
}

// 两个向量的余弦值 function vectorsCos(v1:Vector, v2:Vector){
// 特殊情况,0向量的余弦值我们认为是1 if(vectorLength(v1)*vectorLength(v2)===0){
return 1;
}
return vectorsDotProduct(v1, v2)/(vectorLength(v1)*vectorLength(v2));
}

// 向量的点乘 function vectorsDotProduct(v1:Vector, v2:Vector){
return v1[0]*v2[0]+v1[1]*v2[1];
}
// 向量的长度 function vectorLength(v:Vector){
return Math.sqrt(Math.pow(v[0], 2)+Math.pow(v[1], 2))
}

// 向量归一化,消除向量在长度上的差异,控制变量,方便训练机器学习模型(https://zhuanlan.zhihu.com/p/424518359) function normalizeVector(vec:Vector){
const length = Math.sqrt(Math.pow(vec[0],2)+Math.pow(vec[1], 2))
return [vec[0]/length, vec[1]/length]
}

function handlePredict(){
const results = Object.keys(shapeVectors).map(key=>({
label: key,
similarity: cosineSimilarity(shapeVectors[key], vectorsRef.current),
}))
setPredictResults(results);
console.log('results', results)
}

function handleClear(){
pointsRef.current=[];
sparsedPointsRef.current=[];
vectorsRef.current=[];
(canvasContextRef.current!).fillStyle = 'rgb(0,0,0)';
(canvasContextRef.current!).fillRect(0, 0, 500, 500);
setPredictResults([]);
}

// 工程化封装,为某个dom元素增加自定义手势事件 function addCustomEvent(ele: HTMLElement, eventName: string, eventLisener:(...args:any[])=>any){
let points = [], sparsedPoints=[],vecs:Vector[]=[];
const customEvent = new Event(eventName);

function handleMouseMove(e: any){
const x:number = e.offsetX, y:number = e.offsetY;
const newPoints = [...pointsRef.current, {x,y}];
points = newPoints;
const sparsedNewPoints = sparsePoints(newPoints);
sparsedPoints=sparsedNewPoints;
const newVectors = points2Vectors(sparsedNewPoints)
vecs = newVectors;
console.log('points', x, y)
}

const handleMouseMoveThrottled = throttle(handleMouseMove, 16)

function handleMouseDown(){
ele.addEventListener('mousemove', handleMouseMoveThrottled);
}

function handleMouseUp(){
console.log('up')
ele.removeEventListener('mousemove', handleMouseMoveThrottled);
console.log('points', sparsedPointsRef.current)
console.log('vectors', JSON.stringify(vectorsRef.current))
if(judge(vecs, shapeVectors['l'], 0.6)){
ele.dispatchEvent(customEvent)
}
points=[], sparsedPoints=[], vecs=[];
}

ele.addEventListener(eventName, eventLisener)
ele.addEventListener('mousedown', handleMouseDown);
ele.addEventListener('mouseup', handleMouseUp);

return function distroyEventListener(){
ele.removeEventListener(eventName, eventLisener)
}
}

return 
<canvas  width='500' height="500"></canvas>
<section>
<button notallow={handlePredict}>预测</button>
<button notallow={handleClear}>清空</button>
</section>
<ul>
{predictResults.map(e=>(
<li key={e.label}>
{`与 ${e.label}的相似度:${e.similarity}`}
</li>
))}
</ul>

}
export default Gesture

性能优化

点和向量的计算属于计算密集型任务,且其需要与主线程通信的数据量不大,考虑将其搬进webworker。此外,canvas的渲染性能也可以使用requestAnimationFrame和硬件加速来优化。属于常见的工程层面优化,此处略。

方案评价

余弦相似度的方法,优势在于计算量不大,可以在运行时由用户自定义手势,且所需保存的数据量不大,也适合网络传输。劣势在于难以衡量复杂多笔画、没有严格笔顺的图形的相似度。

​扩展到三维空间​

针对二维平面内的手势识别方案如何扩展到三维空间呢?比如在VR/MR场景内,手势路径会是一组三维向量,如果我们能将余弦相似度的适用范围扩展到三维向量,也就顺理成章地解决了这个问题。

基本思路就是分别分析两个三维向量在xoy平面上的投影之间的夹角以及在yoz平面上的投影之间的夹角的余弦相似度,将两者的乘积作为两个三维向量之间的余弦相似度。判断逻辑与二维向量的一致。

​综合方案​

综合考虑机器学习的方案和几何分析方案的优劣势,我们做如下设计。对于预设的手势,我们构造数据集、离线训练模型,然后将模型内置在产品内。对于自定义的手势,我们采用几何分析方案,让用户连续输入3次,先计算每次输入的路径的两两之间的相似度,且选出相似度的最小值n,如果最小值n大于某个阈值m,且每次输入的路径与其他已有路径的相似度均小于m时,我们就将距离其余两条路径的相似度之和最小的那条路径作为用户自定义的新路径,n作为其相似度判断的阈值。

参考资料

[1]预训练好的模型: https://github.com/tensorflow/tfjs-models

[2]环境搭建: https://github.com/tensorflow/tfjs#getting-started

[3]推导过程: https://blog.csdn.net/dcrmg/article/details/52416832

[4]复杂鼠标手势的识别是如何实现的? - 知乎: https://www.zhihu.com/question/20607813

[5]点积相似度、余弦相似度、欧几里得相似度: https://zhuanlan.zhihu.com/p/159244903

[6]机器学习并没有那么深奥,它还很有趣(1)-36氪: https://m.36kr.com/p/1721248956417

[7]计算向量间相似度的常用方法: https://cloud.tencent.com/developer/article/1668762

[8]C#手势库的核心逻辑实现: https://github.com/poerin/Stroke/blob/master/Stroke/Gesture.cs

[9]什么是张量 (tensor)? - 知乎: https://www.zhihu.com/question/20695804

[10]使用 CNN 识别手写数字: https://codelabs.developers.google.com/codelabs/tfjs-training-classfication?hl=zh-cn#0

[11]机器学习: https://zh.m.wikipedia.org/zh/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0

[12]文字识别方法整理(2015~2019): https://zhuanlan.zhihu.com/p/65707543

The above is the detailed content of Create your own interactive events - screen gesture recognition. For more information, please follow other related articles on the PHP Chinese website!

Statement:
This article is reproduced at:51cto.com. If there is any infringement, please contact admin@php.cn delete