Development trends and issues of deep learning in 2022
We put behind us another year of exciting developments in artificial intelligence (AI) deep learning—a year filled with notable advances, controversy, and, of course, controversy. As we wrap up 2022 and prepare to welcome 2023, here are the most notable overall trends in deep learning this year.
#1. Scale remains an important factor
One theme that has remained constant in deep learning over the past few years is the creation The driving force for larger neural networks. The availability of computer resources enables the development of scalable neural networks as well as specialized AI hardware, large data sets, and scale-friendly architectures such as transformer models.
Currently, companies are getting better results by scaling neural networks to larger scales. In the past year, DeepMind released Gopher, a large language model (LLM) with 280 billion parameters; Google released the Pathways language model (PaLM) with 540 billion parameters and the general language model (GLaM) with up to 1.2 trillion parameters. ); Microsoft and NVIDIA released Megatron-Turing NLG, a 530 billion parameter LLM.
One of the interesting aspects of scale is the ability to emerge, where larger models successfully accomplish tasks that would be impossible for smaller models. This phenomenon is particularly interesting in LLMs, where as the scale increases, the models show promising results on a wider range of tasks and benchmarks.
However, it is worth noting that even in the largest models, some fundamental problems of deep learning remain unresolved (more on this later).
2. Unsupervised learning continues to deliver
Many successful deep learning applications require humans to label training examples, also known as supervised learning. But most data available on the internet does not come with the clean labels required for supervised learning. Data annotation is expensive and slow, creating bottlenecks. That's why researchers have long sought advances in unsupervised learning, in which deep learning models are trained without human-annotated data.
This field has made tremendous progress in recent years, especially in the field of LLMs, which are mostly trained on large raw data sets collected from the Internet. While the LL.M. continues to gain ground in 2022, we are also seeing other trends in unsupervised learning techniques gaining in popularity.
For example, text-to-image models have made amazing progress this year. Models such as OpenAI’s DALL-E 2, Google’s Imagen, and Stability AI’s Stable Diffusion demonstrate the power of unsupervised learning. Unlike older text-to-image models that require well-annotated image and description pairs, these models use large datasets of loosely captioned images that already exist on the Internet. The sheer size of their training dataset (which is only possible because no manual labeling is required) and the variability of the subtitle schemes enable these models to find a variety of complex patterns between textual and visual information. Therefore, they are more flexible in generating images for various descriptions.
3. Multimodality makes great strides
Text-to-image generators have another interesting feature: they combine multiple data types in a single model . Being able to handle multiple patterns enables deep learning models to take on more complex tasks.
Multimodality is very important for human and animal intelligence. For example, when you see a tree and hear the wind rustling in its branches, your brain can quickly connect them. Likewise, when you see the word "tree," you can quickly conjure up an image of a tree, remember the smell of pine trees after it rains, or recall other experiences you've had before.
Obviously, multimodality plays an important role in making deep learning systems more flexible. This is perhaps best demonstrated by DeepMind’s Gato, a deep learning model trained on a variety of data types, including images, text, and proprioceptive data. Gato excels at multiple tasks, including image captioning, interactive dialogue, controlling robotic arms, and playing games. This is in contrast to classic deep learning models that are designed to perform a single task.
Some researchers have advanced the concept that we only need systems like Gato to implement artificial intelligence (AGI). Although many scientists disagree with this view, it is certain that multimodality has brought important achievements to deep learning.
4. Fundamental issues in deep learning remain
Despite the impressive achievements of deep learning, some issues in the field remain unresolved. These include causation, compositionality, common sense, reasoning, planning, intuitive physics, and abstraction and analogy.
These are some of the mysteries of intelligence that are still being studied by scientists in different fields. Purely scale- and data-based deep learning approaches have helped make incremental progress on some of these problems, but have failed to provide clear solutions.
For example, a larger LLM can maintain coherence and consistency across longer texts. But they failed at tasks that required careful step-by-step reasoning and planning.
Similarly, text-to-image generators create stunning graphics but make basic mistakes when asked to draw images that require composition or have complex descriptions.
These challenges are being discussed and explored by various scientists, including some pioneers of deep learning. The most famous of these is Yann LeCun, the Turing Award-winning inventor of convolutional neural networks (CNN), who recently wrote a lengthy article about the limitations of LLMs that learn only from text. LeCun is working on a deep learning architecture that can learn a model of the world and could solve some of the challenges currently facing the field.
Deep learning has come a long way. But the more progress we make, the more we realize the challenges of creating truly intelligent systems. Next year will definitely be as exciting as this year.
The above is the detailed content of Development trends and issues of deep learning in 2022. For more information, please follow other related articles on the PHP Chinese website!

This article explores the growing concern of "AI agency decay"—the gradual decline in our ability to think and decide independently. This is especially crucial for business leaders navigating the increasingly automated world while retainin

Ever wondered how AI agents like Siri and Alexa work? These intelligent systems are becoming more important in our daily lives. This article introduces the ReAct pattern, a method that enhances AI agents by combining reasoning an

"I think AI tools are changing the learning opportunities for college students. We believe in developing students in core courses, but more and more people also want to get a perspective of computational and statistical thinking," said University of Chicago President Paul Alivisatos in an interview with Deloitte Nitin Mittal at the Davos Forum in January. He believes that people will have to become creators and co-creators of AI, which means that learning and other aspects need to adapt to some major changes. Digital intelligence and critical thinking Professor Alexa Joubin of George Washington University described artificial intelligence as a “heuristic tool” in the humanities and explores how it changes

LangChain is a powerful toolkit for building sophisticated AI applications. Its agent architecture is particularly noteworthy, allowing developers to create intelligent systems capable of independent reasoning, decision-making, and action. This expl

Radial Basis Function Neural Networks (RBFNNs): A Comprehensive Guide Radial Basis Function Neural Networks (RBFNNs) are a powerful type of neural network architecture that leverages radial basis functions for activation. Their unique structure make

Brain-computer interfaces (BCIs) directly link the brain to external devices, translating brain impulses into actions without physical movement. This technology utilizes implanted sensors to capture brain signals, converting them into digital comman

This "Leading with Data" episode features Ines Montani, co-founder and CEO of Explosion AI, and co-developer of spaCy and Prodigy. Ines offers expert insights into the evolution of these tools, Explosion's unique business model, and the tr

This article explores Retrieval Augmented Generation (RAG) systems and how AI agents can enhance their capabilities. Traditional RAG systems, while useful for leveraging custom enterprise data, suffer from limitations such as a lack of real-time dat


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools