


30 lines of Python code can call the ChatGPT API to summarize the main content of the paper
Reading papers can be said to be one of our daily tasks. There are too many papers. How can we read and summarize them quickly? Since the emergence of ChatGPT, there are many services available for reading papers. In fact, using the ChatGPT API is very simple. We can build our own application locally with only 30 lines of python code.
Reading papers can be said to be one of our daily tasks. There are too many papers. How can we read and summarize them quickly? Since the emergence of ChatGPT, there are many services available for reading papers. In fact, using the ChatGPT API is very simple. We can build our own application locally with only 30 lines of python code.
The steps to summarize the paper using Python and the ChatGPT API are simple:
- PyPDF2 for PDF processing and GPT-3.5- OpenAI with turbo interface.
- Use PyPDF2 to open and read PDF files.
- Traverse each page in the PDF document and extract text.
- Use GPT-3.5-turbo to generate summaries for each page's text.
- Merge summaries and save the final summary text to a file.
import PyPDF2
import openai
pdf_summary_text = ""
Parse pdf
pdf_file_path = "./pdfs/paper.pdf"
pdf_file = open(pdf_file_path, 'rb')
pdf_reader = PyPDF2.PdfReader(pdf_file)
Get the text of each page:
for page_num in range(len(pdf_reader. pages)):
page_text = pdf_reader.pages[page_num].extract_text().lower()
Use openai’s api for summary
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful research assistant."},
{" role": "user", "content": f"Summarize this: {page_text}"},
],
)
page_summary = response["choices"][0]["message"] ["content"]
Merge summary
pdf_summary_text = page_summary "n"
pdf_summary_file = pdf_file_path.replace(os.path.splitext(pdf_file_path)[1], "_summary.txt ")
with open(pdf_summary_file, "w ") as file:
file.write(pdf_summary_text)
Done, close the pdf file and recycle memory
pdf_file.close( )
The complete code is as follows:
import os
import PyPDF2
import re
import openai
# Here I assume you are on a Jupiter Notebook and download the paper directly from the URL
!curl -o paper.pdf https://arxiv.org/pdf/2301.00810v3.pdf?utm_source=pocket_saves
# Set the string that will contain the summary
pdf_summary_text = ""
# Open the PDF file
pdf_file_path = "paper.pdf"
# Read the PDF file using PyPDF2
pdf_file = open(pdf_file_path, 'rb')
pdf_reader = PyPDF2.PdfReader(pdf_file)
# Loop through all the pages in the PDF file
for page_num in range(len(pdf_reader.pages)):
# Extract the text from the page
page_text = pdf_reader.pages[page_num].extract_text().lower()
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages= [
{"role": "system", "content": "You are a helpful research assistant."},
{"role": "user", "content": f"Summarize this: { page_text}"},
],
)
page_summary = response["choices"][0]["message"]["content"]
pdf_summary_text =page_summary "n"
pdf_summary_file = pdf_file_path.replace(os.path.splitext(pdf_file_path)[1], "_summary.txt")
with open(pdf_summary_file, "w ") as file:
file.write(pdf_summary_text)
pdf_file.close()
with open(pdf_summary_file, "r") as file:
print(file.read())
There are 2 things to note Things:
1. Openai’s free API call limit is limited. A paper with this method costs about 0.2-0.5 US dollars, which will vary depending on the length of the paper.
2. Gpt4’s API I haven't tested it because I haven't applied for it yet, and the price is too expensive (20 times more expensive). I don't think it's worth it, but you can try to upload the charts of the paper to see if it will have better results (not sure) )
The above is the detailed content of 30 lines of Python code can call the ChatGPT API to summarize the main content of the paper. For more information, please follow other related articles on the PHP Chinese website!

This article explores the growing concern of "AI agency decay"—the gradual decline in our ability to think and decide independently. This is especially crucial for business leaders navigating the increasingly automated world while retainin

Ever wondered how AI agents like Siri and Alexa work? These intelligent systems are becoming more important in our daily lives. This article introduces the ReAct pattern, a method that enhances AI agents by combining reasoning an

"I think AI tools are changing the learning opportunities for college students. We believe in developing students in core courses, but more and more people also want to get a perspective of computational and statistical thinking," said University of Chicago President Paul Alivisatos in an interview with Deloitte Nitin Mittal at the Davos Forum in January. He believes that people will have to become creators and co-creators of AI, which means that learning and other aspects need to adapt to some major changes. Digital intelligence and critical thinking Professor Alexa Joubin of George Washington University described artificial intelligence as a “heuristic tool” in the humanities and explores how it changes

LangChain is a powerful toolkit for building sophisticated AI applications. Its agent architecture is particularly noteworthy, allowing developers to create intelligent systems capable of independent reasoning, decision-making, and action. This expl

Radial Basis Function Neural Networks (RBFNNs): A Comprehensive Guide Radial Basis Function Neural Networks (RBFNNs) are a powerful type of neural network architecture that leverages radial basis functions for activation. Their unique structure make

Brain-computer interfaces (BCIs) directly link the brain to external devices, translating brain impulses into actions without physical movement. This technology utilizes implanted sensors to capture brain signals, converting them into digital comman

This "Leading with Data" episode features Ines Montani, co-founder and CEO of Explosion AI, and co-developer of spaCy and Prodigy. Ines offers expert insights into the evolution of these tools, Explosion's unique business model, and the tr

This article explores Retrieval Augmented Generation (RAG) systems and how AI agents can enhance their capabilities. Traditional RAG systems, while useful for leveraging custom enterprise data, suffer from limitations such as a lack of real-time dat


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools