Home >Database >Mysql Tutorial >MySQL基于时间字段进行分区的方案总结_MySQL

MySQL基于时间字段进行分区的方案总结_MySQL

WBOY
WBOYOriginal
2016-05-27 13:46:261262browse

MySQL支持的分区类型一共有四种:RANGE,LIST,HASH,KEY。其中,RANGE又可分为原生RANGE和RANGE COLUMNS,LIST分为原生LIST和LIST COLUMNS,HASH分为原生HASH和LINEAR HASH,KEY包含原生KEY和LINEAR HASH。关于这些分区之间的差别,改日另写文章进行阐述。

 

最近,碰到一个需求,要对表的时间字段(类型:datetime)基于天进行分区。于是遍历MySQL官方文档分区章节,总结如下:

 

实现方式

 

主要是以下几种:

 

1. 基于RANGE

 

2. 基于RANGE COLUMNS

 

3. 基于HASH

 

测试数据 

 

为了测试以上三种方案,特构造了100万的测试数据,放在test表中,test表只有两列:id和hiredate,其中hiredate只包含10天的数据,从2015-12-01到2015-12-10。具体信息如下:

 

mysql> show create table test\G
*************************** 1. row ***************************
       Table: test
Create Table: CREATE TABLE `test` (
  `id` int(11) DEFAULT NULL,
  `hiredate` datetime DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

mysql> select min(hiredate),max(hiredate) from test;
+---------------------+---------------------+
| min(hiredate)       | max(hiredate)       |
+---------------------+---------------------+
| 2015-12-01 00:00:00 | 2015-12-10 23:59:56 |
+---------------------+---------------------+
1 row in set (0.44 sec)

mysql> select date(hiredate),count(*) from test group by date(hiredate);
+----------------+----------+
| date(hiredate) | count(*) |
+----------------+----------+
| 2015-12-01     |    99963 |
| 2015-12-02     |   100032 |
| 2015-12-03     |   100150 |
| 2015-12-04     |    99989 |
| 2015-12-05     |    99908 |
| 2015-12-06     |    99897 |
| 2015-12-07     |   100137 |
| 2015-12-08     |   100171 |
| 2015-12-09     |    99851 |
| 2015-12-10     |    99902 |
+----------------+----------+
10 rows in set (0.98 sec)

 

测试的维度

 

测试的维度主要从两个方面进行,

 

一、分区剪裁

 

针对特定的查询,是否能进行分区剪裁(即只查询相关的分区,而不是所有分区)

 

二、查询时间

 

鉴于该批测试数据是静止的(即没有并发进行的insert,update和delete操作),数据量也不太大,从这个维度来考量貌似意义也不是很大。

 

因此,重点测试第一个维度。

 

基于RANGE的分区方案

 

在这里,选用了TO_DAYS函数

 

 

CREATE TABLE range_datetime(
    id INT,
    hiredate DATETIME
)
PARTITION BY RANGE (TO_DAYS(hiredate) ) (
    PARTITION p1 VALUES LESS THAN ( TO_DAYS('20151202') ),
    PARTITION p2 VALUES LESS THAN ( TO_DAYS('20151203') ),
    PARTITION p3 VALUES LESS THAN ( TO_DAYS('20151204') ),
    PARTITION p4 VALUES LESS THAN ( TO_DAYS('20151205') ),
    PARTITION p5 VALUES LESS THAN ( TO_DAYS('20151206') ),
    PARTITION p6 VALUES LESS THAN ( TO_DAYS('20151207') ),
    PARTITION p7 VALUES LESS THAN ( TO_DAYS('20151208') ),
    PARTITION p8 VALUES LESS THAN ( TO_DAYS('20151209') ),
    PARTITION p9 VALUES LESS THAN ( TO_DAYS('20151210') ),
    PARTITION p10 VALUES LESS THAN ( TO_DAYS('20151211') )
);

 

 

插入数据并查看特定查询的执行计划

 

 

mysql> insert into range_datetime select * from test;                                                                    
Query OK, 1000000 rows affected (8.15 sec)
Records: 1000000  Duplicates: 0  Warnings: 0

mysql> explain partitions select * from range_datetime where hiredate >= &#39;20151207124503&#39; and hiredate<=&#39;20151210111230&#39;; 
+----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table          | partitions   | type | possible_keys | key  | key_len | ref  | rows   | Extra       |
+----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+
|  1 | SIMPLE      | range_datetime | p7,p8,p9,p10 | ALL  | NULL          | NULL | NULL    | NULL | 400061 | Using where |
+----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+
1 row in set (0.03 sec)

 

注意执行计划中的partitions的内容,只查询了p7,p8,p9,p10三个分区,由此来看,使用to_days函数确实可以实现分区裁剪。

 

 

 

基于RANGE COLUMNS的分区方案

 

RANGE COLUMNS可以直接基于列,而无需像上述RANGE那种,分区的对象只能为整数。

 

创表语句如下:

 

 

CREATE TABLE range_columns ( 
    id INT,
    hiredate DATETIME
)
PARTITION BY RANGE COLUMNS(hiredate) (
    PARTITION p1 VALUES LESS THAN ( &#39;20151202&#39; ),
    PARTITION p2 VALUES LESS THAN ( &#39;20151203&#39; ),
    PARTITION p3 VALUES LESS THAN ( &#39;20151204&#39; ),
    PARTITION p4 VALUES LESS THAN ( &#39;20151205&#39; ),
    PARTITION p5 VALUES LESS THAN ( &#39;20151206&#39; ),
    PARTITION p6 VALUES LESS THAN ( &#39;20151207&#39; ),
    PARTITION p7 VALUES LESS THAN ( &#39;20151208&#39; ),
    PARTITION p8 VALUES LESS THAN ( &#39;20151209&#39; ),
    PARTITION p9 VALUES LESS THAN ( &#39;20151210&#39; ),
    PARTITION p10 VALUES LESS THAN (&#39;20151211&#39; )
);

 

插入数据并查看上述查询的执行计划

 

 

mysql> insert into range_columns select * from test;                                                                    
Query OK, 1000000 rows affected (9.20 sec)
Records: 1000000  Duplicates: 0  Warnings: 0

mysql> explain partitions select * from range_columns where hiredate >= &#39;20151207124503&#39; and hiredate<=&#39;20151210111230&#39;; 
+----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table         | partitions   | type | possible_keys | key  | key_len | ref  | rows   | Extra       |
+----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+
|  1 | SIMPLE      | range_columns | p7,p8,p9,p10 | ALL  | NULL          | NULL | NULL    | NULL | 400210 | Using where |
+----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+
1 row in set (0.11 sec)

 

 

同样,使用该分区方案也实现了分区剪裁。

 

 

 

基于HASH的分区方案

 

因HASH分区对象同样只能为整数,所以我们无法像上述RANGE COLUMNS那种直接引用列,在这里,同样用了TO_DAYS函数进行转换。

 

创表语句如下:

 

CREATE TABLE hash_datetime (
   id INT,
   hiredate DATETIME
)
PARTITION BY HASH( TO_DAYS(hiredate) )
PARTITIONS 10;

 

插入数据并查看上述查询的执行计划

 

 

mysql> insert into hash_datetime select * from test;
Query OK, 1000000 rows affected (9.43 sec)
Records: 1000000  Duplicates: 0  Warnings: 0

mysql> explain partitions select * from hash_datetime where hiredate >= &#39;20151207124503&#39; and hiredate<=&#39;20151210111230&#39;;
+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+
| id | select_type | table         | partitions                    | type | possible_keys | key  | key_len | ref  | rows    | Extra       |
+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+
|  1 | SIMPLE      | hash_datetime | p0,p1,p2,p3,p4,p5,p6,p7,p8,p9 | ALL  | NULL          | NULL | NULL    | NULL | 1000500 | Using where |
+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+
1 row in set (0.00 sec)

 

不难看出,使用hash分区并不能有效的实现分区裁剪,至少在本例,基于天的需求中如此。

 

 

 

以上三种方案都是基于datetime的,那么,对于timestamp类型,又该如何选择呢?

 

事实上,MySQL提供了一种基于UNIX_TIMESTAMP函数的RANGE分区方案,而且,只能使用UNIX_TIMESTAMP函数,如果使用其它函数,譬如to_days,会报如下错误:“ERROR 1486 (HY000): Constant, random or timezone-dependent expressions in (sub)partitioning function are not allowed”。

 

而且官方文档中也提到“Any other expressions involving TIMESTAMP values are not permitted. (See Bug #42849.)”。

 

下面来测试一下基于UNIX_TIMESTAMP函数的RANGE分区方案,看其能否实现分区裁剪。

 

 

 

针对TIMESTAMP的分区方案

 

创表语句如下:

 

 

CREATE TABLE range_timestamp (
    id INT,
    hiredate TIMESTAMP
)
PARTITION BY RANGE ( UNIX_TIMESTAMP(hiredate) ) (
    PARTITION p1 VALUES LESS THAN ( UNIX_TIMESTAMP(&#39;2015-12-02 00:00:00&#39;) ),
    PARTITION p2 VALUES LESS THAN ( UNIX_TIMESTAMP(&#39;2015-12-03 00:00:00&#39;) ),
    PARTITION p3 VALUES LESS THAN ( UNIX_TIMESTAMP(&#39;2015-12-04 00:00:00&#39;) ),
    PARTITION p4 VALUES LESS THAN ( UNIX_TIMESTAMP(&#39;2015-12-05 00:00:00&#39;) ),
    PARTITION p5 VALUES LESS THAN ( UNIX_TIMESTAMP(&#39;2015-12-06 00:00:00&#39;) ),
    PARTITION p6 VALUES LESS THAN ( UNIX_TIMESTAMP(&#39;2015-12-07 00:00:00&#39;) ),
    PARTITION p7 VALUES LESS THAN ( UNIX_TIMESTAMP(&#39;2015-12-08 00:00:00&#39;) ),
    PARTITION p8 VALUES LESS THAN ( UNIX_TIMESTAMP(&#39;2015-12-09 00:00:00&#39;) ),
    PARTITION p9 VALUES LESS THAN ( UNIX_TIMESTAMP(&#39;2015-12-10 00:00:00&#39;) ),
    PARTITION p10 VALUES LESS THAN (UNIX_TIMESTAMP(&#39;2015-12-11 00:00:00&#39;) )
);

 

插入数据并查看上述查询的执行计划

 

mysql> insert into range_timestamp select * from test;
Query OK, 1000000 rows affected (13.25 sec)
Records: 1000000  Duplicates: 0  Warnings: 0

mysql> explain partitions select * from range_timestamp where hiredate >= &#39;20151207124503&#39; and hiredate<=&#39;20151210111230&#39;;
+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table           | partitions   | type | possible_keys | key  | key_len | ref  | rows   | Extra       |
+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+
|  1 | SIMPLE      | range_timestamp | p7,p8,p9,p10 | ALL  | NULL          | NULL | NULL    | NULL | 400448 | Using where |
+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+
1 row in set (0.00 sec)

 

同样也能实现分区裁剪。

 

 

总结:

 

1. 经过对比,个人倾向于第二种方案,即基于RANGE COLUMNS的分区实现。

 

2. 在5.7版本之前,对于DATA和DATETIME类型的列,如果要实现分区裁剪,只能使用YEAR() 和TO_DAYS()函数,在5.7版本中,又新增了TO_SECONDS()函数。

 

3. 其实LIST也能实现基于天的分区方案,但在这个需求上,相比于RANGE,还是显得很鸡肋。

 

4. TIMESTAMP类型的列,只能基于UNIX_TIMESTAMP函数进行分区,切记!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn