Recommended learning: Redis video tutorial
Method 1: Redis-based setnx operation
We are here When using Redis's distributed lock, everyone knows that it relies on the setnx instruction. During the CAS (Compare and swap) operation, the expiration practice (expire) is set for the specified key. We are mainly limiting the current The purpose is to allow only N number of requests to access my code program within unit time. So relying on setnx can easily achieve this function.
For example, if we need to limit 20 requests within 10 seconds, then we can set the expiration time to 10 during setnx. When the number of requested setnx reaches 20, the current limiting effect will be achieved. The code is relatively simple and will not be shown.
Of course, there are many disadvantages to this approach. For example, when counting 1-10 seconds, it is impossible to count 2-11 seconds. If you need to count M requests within N seconds, then our Redis Need to maintain N keys and other issues.
In the specific implementation, you can consider using the interceptor HandlerInterceptor:
public class RequestCountInterceptor implements HandlerInterceptor { private LimitPolicy limitPolicy; public RequestCountInterceptor(LimitPolicy limitPolicy) { this.limitPolicy = limitPolicy; } @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { if (!limitPolicy.canDo()) { return false; } return true; } }
At the same time add a configuration LimitConfiguration:
@Configuration public class LimitConfiguration implements WebMvcConfigurer { @Override public void addInterceptors(InterceptorRegistry registry) { registry.addInterceptor(new RequestCountInterceptor(new RedisLimit1())).addPathPatterns("/my/increase"); } }
This way every time a /my/increase request reaches the Controller Previously, the current limit was based on the policy RedisLimit1. The code in the original Controller does not need to be modified:
@RestController @RequestMapping("my") public class MyController { int i = 0; @RequestMapping("/increase") public int increase() { return i++; } }
The specific current limit logic code is in the RedisLimit1 class:
/** * 方法一:基于Redis的setnx的操作 */ public class RedisLimit1 extends LimitPolicy { static { setNxExpire(); } private static boolean setNxExpire() { SetParams setParams = new SetParams(); setParams.nx(); setParams.px(TIME); String result = jedis.set(KEY, COUNT + "", setParams); if (SUCCESS.equals(result)) { return true; } return false; } @Override public boolean canDo() { if (setNxExpire()) { //设置成功,说明原先不存在,成功设置为COUNT return true; } else { //设置失败,说明已经存在,直接减1,并且返回 return jedis.decrBy(KEY, 1) > 0; } } } public abstract class LimitPolicy { public static final int COUNT = 10; //10 request public static final int TIME= 10*1000 ; // 10s public static final String SUCCESS = "OK"; static Jedis jedis = new Jedis(); abstract boolean canDo(); }
One effect achieved in this way is Maximum of 10 requests per second.
Method 2: Redis-based data structure zset
In fact, the most important thing involved in current limiting is the sliding window. It is also mentioned above how 1-10 becomes 2-11. In fact, the starting value and the end value are both 1.
If we use Redis's list data structure, we can easily implement this function
We can create the request into a zset array. When each request comes in, the value remains unique and can be generated using UUID, and score It can be represented by the current timestamp, because score can be used to calculate the number of requests within the current timestamp. The zset data structure also provides the zrange method so that we can easily get how many requests there are within 2 timestamps
/** * 方法二:基于Redis的数据结构zset */ public class RedisLimit2 extends LimitPolicy { public static final String KEY2 = "LIMIT2"; @Override public boolean canDo() { Long currentTime = new Date().getTime(); System.out.println(currentTime); if (jedis.zcard(KEY2) > 0) { // 这里不能用get判断,会报错:WRONGTYPE Operation against a key holding the wrong kind of value Integer count = jedis.zrangeByScore(KEY2, currentTime - TIME, currentTime).size(); // 注意这里使用zrangeByScore,以时间作为score。zrange key start stop 命令的start和stop是序号。 System.out.println(count); if (count != null && count > COUNT) { return false; } } jedis.zadd(KEY2, Double.valueOf(currentTime), UUID.randomUUID().toString()); return true; } }
The above code can achieve the effect of a sliding window and ensure that every N seconds At most M requests, the disadvantage is that the data structure of zset will become larger and larger. The implementation method is relatively simple.
Method 3: Redis-based token bucket algorithm
When it comes to current limiting, we have to mention the token bucket algorithm. The token bucket algorithm mentions input rate and output rate. When the output rate is greater than the input rate, the traffic limit is exceeded. That is to say, every time we access a request, we can get a token from Redis. If we get the token, it means that the limit has not been exceeded. If we cannot get it, the result will be the opposite.
Relying on the above ideas, we can easily implement such code by combining the List data structure of Redis. It is just a simple implementation that relies on the leftPop of List to obtain the token.
First configure a scheduled task and insert a token every second through the rpush method of the redis list:
@Configuration //1.主要用于标记配置类,兼备Component的效果。 @EnableScheduling // 2.开启定时任务 public class SaticScheduleTask { //3.添加定时任务 @Scheduled(fixedRate = 1000) private void configureTasks() { LimitPolicy.jedis.rpush("LIMIT3", UUID.randomUUID().toString()); } }
When the current is limited, obtain the corresponding token from redis through the lpop method of the list , if the acquisition is successful, the request can be executed:
/** * 方法三:令牌桶 */ public class RedisLimit3 extends LimitPolicy { public static final String KEY3 = "LIMIT3"; @Override public boolean canDo() { Object result = jedis.lpop(KEY3); if (result == null) { return false; } return true; } }
Recommended learning: Redis video tutorial
The above is the detailed content of Three ways to implement a current limiter in Redis (summary sharing). For more information, please follow other related articles on the PHP Chinese website!

Redis plays a key role in data storage and management, and has become the core of modern applications through its multiple data structures and persistence mechanisms. 1) Redis supports data structures such as strings, lists, collections, ordered collections and hash tables, and is suitable for cache and complex business logic. 2) Through two persistence methods, RDB and AOF, Redis ensures reliable storage and rapid recovery of data.

Redis is a NoSQL database suitable for efficient storage and access of large-scale data. 1.Redis is an open source memory data structure storage system that supports multiple data structures. 2. It provides extremely fast read and write speeds, suitable for caching, session management, etc. 3.Redis supports persistence and ensures data security through RDB and AOF. 4. Usage examples include basic key-value pair operations and advanced collection deduplication functions. 5. Common errors include connection problems, data type mismatch and memory overflow, so you need to pay attention to debugging. 6. Performance optimization suggestions include selecting the appropriate data structure and setting up memory elimination strategies.

The applications of Redis in the real world include: 1. As a cache system, accelerate database query, 2. To store the session data of web applications, 3. To implement real-time rankings, 4. To simplify message delivery as a message queue. Redis's versatility and high performance make it shine in these scenarios.

Redis stands out because of its high speed, versatility and rich data structure. 1) Redis supports data structures such as strings, lists, collections, hashs and ordered collections. 2) It stores data through memory and supports RDB and AOF persistence. 3) Starting from Redis 6.0, multi-threaded I/O operations have been introduced, which has improved performance in high concurrency scenarios.

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

Redis improves application performance and scalability by caching data, implementing distributed locking and data persistence. 1) Cache data: Use Redis to cache frequently accessed data to improve data access speed. 2) Distributed lock: Use Redis to implement distributed locks to ensure the security of operation in a distributed environment. 3) Data persistence: Ensure data security through RDB and AOF mechanisms to prevent data loss.

Redis's data model and structure include five main types: 1. String: used to store text or binary data, and supports atomic operations. 2. List: Ordered elements collection, suitable for queues and stacks. 3. Set: Unordered unique elements set, supporting set operation. 4. Ordered Set (SortedSet): A unique set of elements with scores, suitable for rankings. 5. Hash table (Hash): a collection of key-value pairs, suitable for storing objects.

Redis's database methods include in-memory databases and key-value storage. 1) Redis stores data in memory, and reads and writes fast. 2) It uses key-value pairs to store data, supports complex data structures such as lists, collections, hash tables and ordered collections, suitable for caches and NoSQL databases.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools