Solutions to cache penetration: 1. Cache empty data; 2. Use Bloom filters. 2. Solution to the cache avalanche: 1. Set the corresponding hotspot key to never expire; 2. Stagger the expiration time, use random generation for the expiration time, and set the expiration time of the hotspot data longer; 3. Combine multiple caches; 4. Procurement Third-party Redis.
The operating environment of this tutorial: Windows 7 system, Redis version 6, DELL G3 computer.
Solutions to Redis cache penetration and avalanche
1. Cache penetration
When the key queried by the user is in It does not exist in redis, and the corresponding ID does not exist in the database. At this time, it is attacked by illegal users. A large number of requests will be directly hit on the db, causing downtime and thus affecting the entire system. This phenomenon is called cache penetration. .
Solution 1: Also cache empty data, such as empty strings, empty objects, empty arrays or lists, the code is as follows
if (list != null && list.size() > 0) { redisOperator.set("subCat:" + rootCatId, JsonUtils.objectToJson(list)); } else { redisOperator.set("subCat:" + rootCatId, JsonUtils.objectToJson(list), 5*60); }
Solution Solution 2: Bloom filter
Bloom filter:
Determine whether an element is in an array, as shown below, using binary to store, The memory occupied is relatively small, 0 represents non-existence, 1 represents existence, and the adding query efficiency is very fast. When a value is saved, an algorithm will be used to save the corresponding value to a certain position on the collection of Bloom filters. There may be multiple keys. When a non-existent key value is passed in, it will be matched with the set. If it does not match, a null will be returned.
Disadvantages:
1, 1% The misjudgment rate, when a key does not exist in the Bloom array, but due to this misjudgment rate, it is judged that the key exists under certain circumstances. When the array is longer, the misjudgment rate is lower, and the shorter the array, the misjudgment rate is lower. The higher the rate
2. When we want to delete a certain key value, the content in our database and redis will be deleted, but it cannot be deleted in the Bloom array because there will be a certain position in the array. If we want to delete a pair of keys, we will change 1 to 0, but all key values will be deleted
3. The code complexity will also increase, because we have to maintain an additional set. When we use redis cluster, Bloom filter should be used in combination with redis
## 2. Redis cache avalanche
Cache avalanche: The data in the cache fails in large batches, and then this use requires a large number of requests. However, because all the keys in redis have failed, all requests will be sent to the db, causing downtimeSolution
1. Set the corresponding hotspot key to never expire[Related recommendations:2. Stagger the expiration time, the expiration time is randomly generated, and the hotspot data The expiration time can be set longer, and non-hot data can be set shorter
3. Combining multiple caches, for example: when a request comes in, you can request redis now, and then request memcache when it does not exist in redis. If it does not exist, go again. Request db
4. Purchase third-party Redis (redis on Alibaba Cloud or Tencent Cloud)
Redis video tutorial]
The above is the detailed content of How to solve redis cache avalanche and penetration. For more information, please follow other related articles on the PHP Chinese website!

Redis是现在最热门的key-value数据库,Redis的最大特点是key-value存储所带来的简单和高性能;相较于MongoDB和Redis,晚一年发布的ES可能知名度要低一些,ES的特点是搜索,ES是围绕搜索设计的。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了关于redis的一些优势和特点,Redis 是一个开源的使用ANSI C语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式存储数据库,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了Redis Cluster集群收缩主从节点的相关问题,包括了Cluster集群收缩概念、将6390主节点从集群中收缩、验证数据迁移过程是否导致数据异常等,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了Redis实现排行榜及相同积分按时间排序,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了关于原子操作中命令原子性的相关问题,包括了处理并发的方案、编程模型、多IO线程以及单命令的相关内容,下面一起看一下,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了bitmap问题,Redis 为我们提供了位图这一数据结构,位图数据结构其实并不是一个全新的玩意,我们可以简单的认为就是个数组,只是里面的内容只能为0或1而已,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了Redis实现排行榜及相同积分按时间排序,本文通过实例代码给大家介绍的非常详细,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了关于实现秒杀的相关内容,包括了秒杀逻辑、存在的链接超时、超卖和库存遗留的问题,下面一起来看一下,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor

WebStorm Mac version
Useful JavaScript development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
